Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure...Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.展开更多
Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient di...Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.展开更多
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ...In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.展开更多
A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in ...A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.展开更多
The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mob...The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mobility are linked with thermodynamic and kinetic databases. Simulated results show that the interaction among γ′ ordered domains has great influence on the microstructure, the interdiffnsion velocity and the volume fraction ofγ′ phase on both sides of the diffusion couples.展开更多
By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. Th...By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. The condition of plane strain is invoked. Two group of solutions have been obtained for the crack surface conditions: (1) traction free and (2) frictionless contact, respectively. It is found that along the interface ahead of crack tip the stress fields are co-order continuous while the displacement fields are cross-order continuous. The zone of dominance of the asymptotic solutions has been estimated.展开更多
We theoretically study the high-order harmonic generation (HHG) in a two-color laser field using the Bohmian mechanics. Our results show that, for tile case of a weak second-color laser field, the simulation of the ...We theoretically study the high-order harmonic generation (HHG) in a two-color laser field using the Bohmian mechanics. Our results show that, for tile case of a weak second-color laser field, the simulation of the HHG with only one central Bohmian trajectory is in a good agreement with the ab initio time-dependent Schrodinger equation (TDSE) results. In contrast, with the increase of the amplitude of the second-color laser field, the HHG spectra from the single central Bohmian trajectory deviate from the TDSE results more and more significantly. By analyzing the Bohmian trajectories, we find that the significant deviation is due to the fact that the central Bohmian trajectory leaves the core quickly in the two-color laser field with the breaking of inversion symmetry. Interestingly, we find that another Bohmian trajectory with different initial position, which keeps oscillating around the core, could qualitatively well reproduce the TDSE results. Furthermore, we study the HHG spectrum in a two-color laser field with inversion symmetry and find that the HHG spectrum in TDSE can be still well simulated with the central Bohmian trajectory. These results indicate that, similar to the case of one color laser field, the HHG spectra in a two-color laser field can be also reproduced with a single Bohmian trajectory, although the initial position of the trajectory is dependent on the symmetry of the laser field. Our work thus demonstrates that Bohmian trajectory theory can be used as a promising tool in investigating the HHG process in a two-color laser field.展开更多
This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by o...This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by optimising the chirping parameters. The time-frequency characteristics of high-order harmonics with different chirping parameters are analysed by means of wavelet transform of the dipole acceleration. It also gives out the classical three-step model pictures of electron. By superposing a properly selected range of the harmonic spectrum, it obtains an isolated 65as pulse.展开更多
We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser...We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).展开更多
We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between th...We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics. Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.展开更多
We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify ...We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify the chaos properties of this system, the existence of horseshoe in the four-wing attractor is presented. Firstly, a Poincar6 section is selected properly, and a first-return Poincar6 map is established. Then, a one-dimensional tensile horseshoe is discovered, which verifies the chaos existence of the system in mathematical view. Finally, the fractional-order chaotic attractor is imple- mented physically with a field-programmable gate array (FPGA) chip, which is useful in further engineering applications of information encryption and secure communications.展开更多
This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarki...This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.展开更多
Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of gener...Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.展开更多
Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial...Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial state separately being the ground and excited states is presented. When the hardness parameter a in the soft Coulomb potential V(x) =-1√x^2+α is chosen to be small enough, the so-called hard Coulomb potential V(x)=1/|x| can be obtained. It is well known that the hard one-dimensional Coulomb atom has an unstable ground state with an energy eigenvalue of - 0.5 and it has no states corresponding to physical states in the true atoms, and has the first and second excited states being degenerate. The parity effects on the HHG can be seen from the first and second excited states of the hard one-dimensional Coulomb atom. The HHG spectra of the excited states from both the soft and hard Coulomb atom models are shown to have more complex structures and to be much stronger than the corresponding HHG spectrum of the ground state of the soft Coulomb model with a = 2 in the same laser field. Laser-induced non-resonant one-photon emission is also observed.展开更多
It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squ...It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.展开更多
The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of ...The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of contributions to high-order harmonic generation(HHG) from different nuclei is realized by properly selecting the relative phase.When the relative phase is chosen to be φ= 0.4π,the contribution to HHG from one nucleus is much more than that from another.Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 e V to125 e V.The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical threestep model with a finite initial transverse velocity.By superposing several orders of harmonics,an isolated attosecond pulse with a duration of 80 as can be generated.展开更多
The generation of high-order harmonics and the attosecond pulse of the N2 molecule in two-color circularly polarized laser fields are investigated by the strong-field Lewenstein model. We show that the plateau of spec...The generation of high-order harmonics and the attosecond pulse of the N2 molecule in two-color circularly polarized laser fields are investigated by the strong-field Lewenstein model. We show that the plateau of spectra is dramatically extended and a continuous harmonic spectrum with the bandwidth of 113 eV is obtained. When a static field is added to the x direction, the quantum path control is realized and a supercontinuum spectrum can be obtained, which is beneficial to obtain a shorter attosecond pulse. The underlying physical mechanism is well explained by the time-frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics in the combination of two-color circularly polarized laser fields and a static field, an isolated attosecond pulse with a duration of 30 as can be generated.展开更多
The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degr...The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degree of Al atoms is obviously higher than that of Fe atoms,and the ordering of Al atoms precedes their clustering,while the case of Fe atoms is opposite.The α site is mainly occupied by Ni atoms,while the β site is occupied in common by Al,Fe and Ni atoms.At order-disorder interphase boundary,the ordering degree of Al atoms is higher than that of Fe atoms,and at the β site,the Fe atomic site occupation probabilities vary from high to low during ordering;the Al atomic site occupation probabilities are similar to those of Fe atoms,but their values are much higher than those of Fe atoms;Ni atoms are opposite to both of them.Meanwhile,during the ordering transformation,γ' phase is always a complex Ni3(AlFeNi)single-phase,and it is precipitated by the non-classical nucleation and growth style.Finally,in the alloy system,the volume of γ' ordered phase is less than that of γ phase,and the volume ratio of order to disorder is about 77%.展开更多
High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving in...High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving intensity. However,the multiphoton-resonant enhancement(MRE) factor in the realistic atomic hydrogen is much smaller than that in a twolevel system. To study the deviation, we present a theoretical investigation of the multiphoton resonance dynamics of three-level systems driven by intense frequency-comb laser fields. The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between the quantum system and the laser fields. The investigations show that the dipole interaction of a two-level system with the third level affects the multiphoton resonance dynamics and enhances the HHG spectra. It is the dipole interaction of the excited level of the two-level system with other levels that results in the smaller MRE factor in the realistic atomic system.展开更多
Academic biology-medicine refers to a couple of philosophies, Organicism and Mechanism, which translates into an association of Cybernetic diagrams and molecular Reductionism. This association presents logical difficu...Academic biology-medicine refers to a couple of philosophies, Organicism and Mechanism, which translates into an association of Cybernetic diagrams and molecular Reductionism. This association presents logical difficulties which make it unsuitable to describe correctly biological effects of electromagnetic fields, EMF. But these logical difficulties may be overcome when renewing the organic cell idea by means of a Philosophy of Nature which juxtaposes causality order and sense order in the cell. The signalsome, the set of descriptive components resulting from the genome, is constantly reorganized. This remodeling may become epigenetic when the phenotype becomes transformed by experience of perceptions in a given medium, because the perception of overall information coming from the extracellular medium becomes functional within the system. In that cellular perception, it is stated that the significance base which contributes to the sense order results from the qualitative topological structure of the extracellular medium. Therefore the EMF interactions target is not only the membrane and its molecules;it is also the structure of the extracellular medium which bathes the membrane. Knowing that the sense order modulation constitutes the global soil of the (localized) causality order, it is possible to obtain a same EMF bioeffect on a membrane molecule by treating a culture of cells in its bath or by treating only the extracellular aqueous medium. Consequently, the double bioeffect resulting from EMF exposure is described simply, because the sense order, such as it results from the qualitative structuring of the medium, forms the significance base which directs the causal mechanics of the cellular answer.展开更多
基金Projects(50671084, 50875217) supported by the National Natural Science Foundation of ChinaProjects(2003E106, SJ08-ZT05) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject(20070420218) supported by China Postdoctoral Science Foundation
文摘Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.
基金Projects(90305023 59731020) supported by the National Natural Science Foundation of China
文摘Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.
文摘In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
基金Project(20080431344) supported by Postdoctoral Science Foundation of ChinaProject(51021001) supported by the National Natural Science Foundation of China
文摘A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.
基金Project supported by the National Natural Science Foundation of China (Grant No 50401013)the National Defense Preresearch Foundation of China (Grant No 9140A12020108HK0333)
文摘The effect of interaction among γ′ ordered domains on the interdiffusion process in γ+γ′ and γ+γ′/γ+γ′ diffusion couples is investigated by using the phase-field method, in which bulk free energy and mobility are linked with thermodynamic and kinetic databases. Simulated results show that the interaction among γ′ ordered domains has great influence on the microstructure, the interdiffnsion velocity and the volume fraction ofγ′ phase on both sides of the diffusion couples.
基金The project supported by the National Natural Science Foundation of China
文摘By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. The condition of plane strain is invoked. Two group of solutions have been obtained for the crack surface conditions: (1) traction free and (2) frictionless contact, respectively. It is found that along the interface ahead of crack tip the stress fields are co-order continuous while the displacement fields are cross-order continuous. The zone of dominance of the asymptotic solutions has been estimated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11334009,11474321,and 11527807)
文摘We theoretically study the high-order harmonic generation (HHG) in a two-color laser field using the Bohmian mechanics. Our results show that, for tile case of a weak second-color laser field, the simulation of the HHG with only one central Bohmian trajectory is in a good agreement with the ab initio time-dependent Schrodinger equation (TDSE) results. In contrast, with the increase of the amplitude of the second-color laser field, the HHG spectra from the single central Bohmian trajectory deviate from the TDSE results more and more significantly. By analyzing the Bohmian trajectories, we find that the significant deviation is due to the fact that the central Bohmian trajectory leaves the core quickly in the two-color laser field with the breaking of inversion symmetry. Interestingly, we find that another Bohmian trajectory with different initial position, which keeps oscillating around the core, could qualitatively well reproduce the TDSE results. Furthermore, we study the HHG spectrum in a two-color laser field with inversion symmetry and find that the HHG spectrum in TDSE can be still well simulated with the central Bohmian trajectory. These results indicate that, similar to the case of one color laser field, the HHG spectra in a two-color laser field can be also reproduced with a single Bohmian trajectory, although the initial position of the trajectory is dependent on the symmetry of the laser field. Our work thus demonstrates that Bohmian trajectory theory can be used as a promising tool in investigating the HHG process in a two-color laser field.
基金supported by the National Natural Science Foundation of China (Grant No.10974068)
文摘This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by optimising the chirping parameters. The time-frequency characteristics of high-order harmonics with different chirping parameters are analysed by means of wavelet transform of the dipole acceleration. It also gives out the classical three-step model pictures of electron. By superposing a properly selected range of the harmonic spectrum, it obtains an isolated 65as pulse.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174108,11104108,and 11271158)
文摘We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).
基金Project supported by Chinese Academy of Sciences,the National Natural Science Foundation (Grant Nos. 10734080,10523003,60921004,10904157,and 60978012)973 Project (Grant No. 2006CB806000)Shanghai Commission of Science and Technology(Grant Nos. 06DZ22015 and 07PJ14091)
文摘We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics. Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61502340 and 61374169)the Application Base and Frontier Technology Research Project of Tianjin,China(Grant No.15JCYBJC51800)the South African National Research Foundation Incentive Grants(Grant No.81705)
文摘We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify the chaos properties of this system, the existence of horseshoe in the four-wing attractor is presented. Firstly, a Poincar6 section is selected properly, and a first-return Poincar6 map is established. Then, a one-dimensional tensile horseshoe is discovered, which verifies the chaos existence of the system in mathematical view. Finally, the fractional-order chaotic attractor is imple- mented physically with a field-programmable gate array (FPGA) chip, which is useful in further engineering applications of information encryption and secure communications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10334090,10425418,60576058)the National Basic Research Program of China(Grant No.2007CB925000)
文摘This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.
文摘Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474138) and the National High-Tech Inertial Confinement Fusion Committee in China.
文摘Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial state separately being the ground and excited states is presented. When the hardness parameter a in the soft Coulomb potential V(x) =-1√x^2+α is chosen to be small enough, the so-called hard Coulomb potential V(x)=1/|x| can be obtained. It is well known that the hard one-dimensional Coulomb atom has an unstable ground state with an energy eigenvalue of - 0.5 and it has no states corresponding to physical states in the true atoms, and has the first and second excited states being degenerate. The parity effects on the HHG can be seen from the first and second excited states of the hard one-dimensional Coulomb atom. The HHG spectra of the excited states from both the soft and hard Coulomb atom models are shown to have more complex structures and to be much stronger than the corresponding HHG spectrum of the ground state of the soft Coulomb model with a = 2 in the same laser field. Laser-induced non-resonant one-photon emission is also observed.
文摘It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11271158,61575077,and 11574117)
文摘The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of contributions to high-order harmonic generation(HHG) from different nuclei is realized by properly selecting the relative phase.When the relative phase is chosen to be φ= 0.4π,the contribution to HHG from one nucleus is much more than that from another.Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 e V to125 e V.The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical threestep model with a finite initial transverse velocity.By superposing several orders of harmonics,an isolated attosecond pulse with a duration of 80 as can be generated.
基金supported by the National Natural Science Foundation of China(Grant Nos.61575077,11271158,and 11574117)
文摘The generation of high-order harmonics and the attosecond pulse of the N2 molecule in two-color circularly polarized laser fields are investigated by the strong-field Lewenstein model. We show that the plateau of spectra is dramatically extended and a continuous harmonic spectrum with the bandwidth of 113 eV is obtained. When a static field is added to the x direction, the quantum path control is realized and a supercontinuum spectrum can be obtained, which is beneficial to obtain a shorter attosecond pulse. The underlying physical mechanism is well explained by the time-frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics in the combination of two-color circularly polarized laser fields and a static field, an isolated attosecond pulse with a duration of 30 as can be generated.
基金Project(50671084)supported by the National Natural Science Foundation of ChinaProject(Z200714)supported by Graduate Starting Seed Fund of Northwestern Polythechnical University,China
文摘The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degree of Al atoms is obviously higher than that of Fe atoms,and the ordering of Al atoms precedes their clustering,while the case of Fe atoms is opposite.The α site is mainly occupied by Ni atoms,while the β site is occupied in common by Al,Fe and Ni atoms.At order-disorder interphase boundary,the ordering degree of Al atoms is higher than that of Fe atoms,and at the β site,the Fe atomic site occupation probabilities vary from high to low during ordering;the Al atomic site occupation probabilities are similar to those of Fe atoms,but their values are much higher than those of Fe atoms;Ni atoms are opposite to both of them.Meanwhile,during the ordering transformation,γ' phase is always a complex Ni3(AlFeNi)single-phase,and it is precipitated by the non-classical nucleation and growth style.Finally,in the alloy system,the volume of γ' ordered phase is less than that of γ phase,and the volume ratio of order to disorder is about 77%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374239,21203144,and 11074199)the Doctoral Fund of Ministry of Education of China(Grant No.20120201120056)the Fundamental Research Funds for the Central Universities,China
文摘High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving intensity. However,the multiphoton-resonant enhancement(MRE) factor in the realistic atomic hydrogen is much smaller than that in a twolevel system. To study the deviation, we present a theoretical investigation of the multiphoton resonance dynamics of three-level systems driven by intense frequency-comb laser fields. The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between the quantum system and the laser fields. The investigations show that the dipole interaction of a two-level system with the third level affects the multiphoton resonance dynamics and enhances the HHG spectra. It is the dipole interaction of the excited level of the two-level system with other levels that results in the smaller MRE factor in the realistic atomic system.
文摘Academic biology-medicine refers to a couple of philosophies, Organicism and Mechanism, which translates into an association of Cybernetic diagrams and molecular Reductionism. This association presents logical difficulties which make it unsuitable to describe correctly biological effects of electromagnetic fields, EMF. But these logical difficulties may be overcome when renewing the organic cell idea by means of a Philosophy of Nature which juxtaposes causality order and sense order in the cell. The signalsome, the set of descriptive components resulting from the genome, is constantly reorganized. This remodeling may become epigenetic when the phenotype becomes transformed by experience of perceptions in a given medium, because the perception of overall information coming from the extracellular medium becomes functional within the system. In that cellular perception, it is stated that the significance base which contributes to the sense order results from the qualitative topological structure of the extracellular medium. Therefore the EMF interactions target is not only the membrane and its molecules;it is also the structure of the extracellular medium which bathes the membrane. Knowing that the sense order modulation constitutes the global soil of the (localized) causality order, it is possible to obtain a same EMF bioeffect on a membrane molecule by treating a culture of cells in its bath or by treating only the extracellular aqueous medium. Consequently, the double bioeffect resulting from EMF exposure is described simply, because the sense order, such as it results from the qualitative structuring of the medium, forms the significance base which directs the causal mechanics of the cellular answer.