期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Comparative Overview of Indirect Field Oriented Control (IFOC) and Deadbeat-Direct Torque and Flux Control (DB-DTFC) for AC Motor Drives 被引量:2
1
作者 Yukai Wang Yuying Shi +1 位作者 Yang Xu Robert D.Lorenz 《Chinese Journal of Electrical Engineering》 2015年第1期9-20,共12页
Indirect field oriented control(IFOC)has become a widely adopted solution for AC motor drives.Standard IFOC controls torque and rotor flux linkage via q-and d-axis current.Alternatively,deadbeat-direct torque and flux... Indirect field oriented control(IFOC)has become a widely adopted solution for AC motor drives.Standard IFOC controls torque and rotor flux linkage via q-and d-axis current.Alternatively,deadbeat-direct torque and flux control(DB-DTFC)has emerged as a promising motor control strategy for the future,which manipulates Volt-sec.vector directly.Air-gap torque and stator flux linkage are decoupled and independently controlled over each switching period.Stator flux linkage is used as a separated degree-of-freedom to manipulate losses dynamically without compromising torque dynamics and torque ripple.In voltage-limited operations,direct selection of Volt-sec.allows DB-DTFC to fully utilize the dc bus voltage and produce fast torque.A single control law is used over a wide speed range.This paper aims to provide a comparative overview of the two motor controls regarding their sensitivity to parameters,current-and voltage-limited operation,loss manipulation,and torque ripple during signal injection.Based on the comparison,the ultimate objective is to demonstrate the opportunities and remaining challenges in DB-DTFC. 展开更多
关键词 Deadbeat-direct torque and flux control field oriented control parameter sensitivity voltage-limited operation loss manipulation torque ripple
原文传递
Driving and Braking Control of PM Synchronous Motor Based on Low-resolution Hall Sensor for Battery Electric Vehicle 被引量:14
2
作者 GU Jing OUYANG Minggao +3 位作者 LI Jianqiu LU Dongbin FANG Chuan MA Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期1-10,共10页
Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but t... Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability. 展开更多
关键词 battery electric vehicle field oriented control low-resolution Hall sensor regenerative braking plug braking six-step commutation braking
下载PDF
PSO Based Controlled Six-phase Grid Connected Induction Generator for Wind Energy Generation 被引量:7
3
作者 Arif Iqbal Girish Kumar Singh 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第1期41-49,共9页
This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulati... This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulation of DC-link voltage has been proposed using particle swarm optimization(PSO)based PI controller,ensuring the power flow to utility grid through back to back converters.The closed loop operation of asymmetrical six-phase GCIG using indirect field oriented control in different configurations has been carried out in Matlab/Simulink environment.Analytical results have been verified using real time test results on virtual platform of Typhoon HIL supported with some experimental validation. 展开更多
关键词 Six-phase induction generator particle swarm optimization(PSO) indirect field oriented control
下载PDF
Torque-based Optimal Acceleration Control for Electric Vehicle 被引量:1
4
作者 LU Dongbin OUYANG Minggao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期319-330,共12页
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-f... The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control. 展开更多
关键词 permanent magnet synchronous motor(PMSM) field oriented control(FOC) efficiency model electric vehicle energy optimal acceleration
下载PDF
Starting Control of Free Piston Stirling Linear Generator System Based on FOC
5
作者 Qiaoling Yang Kechun Zhang +2 位作者 Shenghui Guo Boliang Song Xiaoyu Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期195-200,共6页
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear... Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation. 展开更多
关键词 Parameter setting field orientation control Double closed loop Permanent magnet synchronous linear generator
下载PDF
Robust Sliding Mode Control Using Adaptive Switching Gain for Induction Motors 被引量:5
6
作者 K. Jamoussi L. Chrifi-Alaoui +2 位作者 H. Benderradji A. El Hajjaji M. Ouali 《International Journal of Automation and computing》 EI CSCD 2013年第4期303-311,共9页
A robust sliding mode approach combined with a field oriented control (FOC) for induction motor (IM) speed control is presented. The proposed sliding mode control (SMC) design uses an adaptive switching gain and... A robust sliding mode approach combined with a field oriented control (FOC) for induction motor (IM) speed control is presented. The proposed sliding mode control (SMC) design uses an adaptive switching gain and an integrator. This approach guarantees the same robustness and dynamic performance of traditional SMC algorithms. And at the same time, it attenuates the chattering phenomenon, which is the main drawback in actual implementation of this technique. This approach is insensitive to uncertainties and permits to decrease the requirement for the bound of these uncertainties. The stability and robustness of the closed- loop system are proven analytically using the Lyapunov synthesis approach. The proposed method attenuates the effect of both uncertainties and external disturbances. Experimental results are presented to validate the effectiveness and the good performance of the developed method. 展开更多
关键词 Sliding mode control field oriented control (FOC) practical validation switching gain induction motor.
原文传递
Overview of Advanced Control Strategies for Electric Machines 被引量:5
7
作者 Chunhua Liu Yixiao Luo 《Chinese Journal of Electrical Engineering》 CSCD 2017年第2期53-61,共9页
Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines... Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines,which bring great impacts to industrial development and human society.This paper investigates and discusses the advantages control strategies for electric machines,including the field oriented control(FOC),direct torque control(DTC),finite control set model predictive control(FCS-MPC),sensorless control,and fault tolerant control(FTC).The corresponding control principles,control targets,fundamental approaches,advanced approaches,methodologies,merits and shortcomings are revealed and analyzed in detail. 展开更多
关键词 Electric machine permanent-magnet(PM)machine AC machine control strategy advanced control field oriented control(FOC) direct torque control(DTC) finite control set model predictive control(FCS-MPC) sensorless control and fault tolerant control(FTC)
原文传递
Overview of Model Predictive Control for Induction Motor Drives 被引量:5
8
作者 Yongchang Zhang Bo Xia +1 位作者 Haitao Yang Jose Rodriguez 《Chinese Journal of Electrical Engineering》 2016年第1期62-76,共15页
Model predictive control(MPC)has attracted widespread attention in both academic and industry communities due to its merits of intuitive concept,quick dynamic response,multi-variable control,ability to handle various ... Model predictive control(MPC)has attracted widespread attention in both academic and industry communities due to its merits of intuitive concept,quick dynamic response,multi-variable control,ability to handle various nonlinear constraints,and so on.It is considered a powerful alternative to field oriented control(FOC)and direct torque control(DTC)in high performance AC motor drives.Compared to FOC,MPC eliminates the use of internal current control loops and modulation block,hence featuring very quick dynamic response.Compared to DTC,MPC uses a cost function rather than a heuristic switching table to select the best voltage vector,producing better steady state performance.In spite of the merits above,MPC also presents some drawbacks such as high computational burden,nontrivial weighting factor tuning,high sampling frequency,variable switching frequency,model/parameter dependence and relatively high steady ripples in torque and stator flux.This paper presents the state of the art of MPC in high performance induction motor(IM)drives,and in particular the progress on solving the drawbacks of conventional MPC.Finally,one of the improved MPC is compared to FOC to validate its superiority.It is shown that the improved MPC has great potential in the future high performance AC motor drives. 展开更多
关键词 Model predictive control(MPC) field oriented control(FOC) direct torque control(DTC) induction motor(IM).
原文传递
Classical state feedback controller for nonlinear systems using mean value theorem: closed Ioop-FOC of PMSM motor application
9
作者 Abrar ALLAG Abdelhamid BENAKCHA +2 位作者 Meriem ALLAG Ismail ZEIN Mohamed Yacine AYAD 《Frontiers in Energy》 SCIE CSCD 2015年第4期413-425,共13页
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different... The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed. 展开更多
关键词 Takagi-Sugeno (T-S) fuzzy systems sectornonlinearity nonlinear controller linear matrix inequality(LMI) approach differential mean value theorem (DMVT) field oriented control (FOC) linear parameter varying(LPV)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部