Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation paramet...Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.展开更多
Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-f...Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.展开更多
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear...Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation.展开更多
Indirect field oriented control(IFOC)has become a widely adopted solution for AC motor drives.Standard IFOC controls torque and rotor flux linkage via q-and d-axis current.Alternatively,deadbeat-direct torque and flux...Indirect field oriented control(IFOC)has become a widely adopted solution for AC motor drives.Standard IFOC controls torque and rotor flux linkage via q-and d-axis current.Alternatively,deadbeat-direct torque and flux control(DB-DTFC)has emerged as a promising motor control strategy for the future,which manipulates Volt-sec.vector directly.Air-gap torque and stator flux linkage are decoupled and independently controlled over each switching period.Stator flux linkage is used as a separated degree-of-freedom to manipulate losses dynamically without compromising torque dynamics and torque ripple.In voltage-limited operations,direct selection of Volt-sec.allows DB-DTFC to fully utilize the dc bus voltage and produce fast torque.A single control law is used over a wide speed range.This paper aims to provide a comparative overview of the two motor controls regarding their sensitivity to parameters,current-and voltage-limited operation,loss manipulation,and torque ripple during signal injection.Based on the comparison,the ultimate objective is to demonstrate the opportunities and remaining challenges in DB-DTFC.展开更多
Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation ...Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.展开更多
基金This work was supported by the National Natural Science Foundation of China (No,50177009) and Guangdong Natural Science Foundation (No.011652) .
文摘Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.
文摘Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51767018,in part by the Scientific research project of Education Department of Gansu Province under Grant 2017A-012.
文摘Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation.
基金support provided by the Wisconsin Electric Machines and Power Electronics Consortium(WEMPEC)of the University of Wisconsin-Madison.
文摘Indirect field oriented control(IFOC)has become a widely adopted solution for AC motor drives.Standard IFOC controls torque and rotor flux linkage via q-and d-axis current.Alternatively,deadbeat-direct torque and flux control(DB-DTFC)has emerged as a promising motor control strategy for the future,which manipulates Volt-sec.vector directly.Air-gap torque and stator flux linkage are decoupled and independently controlled over each switching period.Stator flux linkage is used as a separated degree-of-freedom to manipulate losses dynamically without compromising torque dynamics and torque ripple.In voltage-limited operations,direct selection of Volt-sec.allows DB-DTFC to fully utilize the dc bus voltage and produce fast torque.A single control law is used over a wide speed range.This paper aims to provide a comparative overview of the two motor controls regarding their sensitivity to parameters,current-and voltage-limited operation,loss manipulation,and torque ripple during signal injection.Based on the comparison,the ultimate objective is to demonstrate the opportunities and remaining challenges in DB-DTFC.
基金Supported by the National Natural Science Foundation of China(No.51276016)the Fundamental Research Funds for the Central University(No.FRF-TP-12-059A)
文摘Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.