This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start wi...This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start with the linear scheme,which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable.The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable.Moreover,the scheme leads to linear algebraic system to solve at each iteration,and we employ the multigrid solver to solve it efficiently.Numerical re-sults are given to illustrate that the combination of local discontinuous Galerkin(LDG)spatial discretization and the high order temporal scheme is a practical,accurate and efficient simulation tool when solving phase field problems.Namely,we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principl...An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.展开更多
The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an i...The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.展开更多
The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field...The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.展开更多
The notion of preordering, which is a generalization of the notion of ordering, has been introduced by Serre. On the other hand, the notion of round quadratic forms has been introduced by Witt. Based on these ideas, i...The notion of preordering, which is a generalization of the notion of ordering, has been introduced by Serre. On the other hand, the notion of round quadratic forms has been introduced by Witt. Based on these ideas, it is here shown that 1) a field F is formally real n-pythagorean iff the nth radical, RnF is a preordering (Theorem 2), and 2) a field F is n-pythagorean iff for any n-fold Pfister form ρ. There exists an odd integer l(>1) such that l×ρ is a round quadratic form (Theorem 8). By considering upper bounds for the number of squares on Pfister’s interpretation, these results finally lead to the main result (Theorem 10) such that the generalization of pythagorean fields coincides with the generalization of Hilbert’s 17th Problem.展开更多
Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induce...Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induced due to close interaction with other objects.Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect.In the present work,we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities.In a benchmark example of two parallel rods,we compare the line element solution with the boundary element solution to show the accuracy as a function in terms of rods distance.Furthermore,we use more complicated examples to demonstrate the capability of the line element technique.展开更多
基金Research of R.Guo is supported by NSFC grant No.11601490Research of Y.Xu is supported by NSFC grant No.11722112,91630207.
文摘This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start with the linear scheme,which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable.The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable.Moreover,the scheme leads to linear algebraic system to solve at each iteration,and we employ the multigrid solver to solve it efficiently.Numerical re-sults are given to illustrate that the combination of local discontinuous Galerkin(LDG)spatial discretization and the high order temporal scheme is a practical,accurate and efficient simulation tool when solving phase field problems.Namely,we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金Project supported by the National Natural Science Foundation of China (No. 60304009) and the Natural Science Foundation of Hebei Province of China (No. F2005000385)
文摘An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.
基金the Basic Science Research Program through the National Research Foundation of Korea (NRF-2014R1A1A2057735)the Kyung Hee University in 2016 [KHU-20160601]
文摘The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.
文摘The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.
文摘The notion of preordering, which is a generalization of the notion of ordering, has been introduced by Serre. On the other hand, the notion of round quadratic forms has been introduced by Witt. Based on these ideas, it is here shown that 1) a field F is formally real n-pythagorean iff the nth radical, RnF is a preordering (Theorem 2), and 2) a field F is n-pythagorean iff for any n-fold Pfister form ρ. There exists an odd integer l(>1) such that l×ρ is a round quadratic form (Theorem 8). By considering upper bounds for the number of squares on Pfister’s interpretation, these results finally lead to the main result (Theorem 10) such that the generalization of pythagorean fields coincides with the generalization of Hilbert’s 17th Problem.
文摘Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induced due to close interaction with other objects.Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect.In the present work,we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities.In a benchmark example of two parallel rods,we compare the line element solution with the boundary element solution to show the accuracy as a function in terms of rods distance.Furthermore,we use more complicated examples to demonstrate the capability of the line element technique.