In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper ...In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper proposes a method for self-programmable variable digital filter(VDF) design based on field programmable gate array(FPGA).We implement a digital filter system by using custom embedded micro-processor,programmable finite impulse response(P-FIR) macro module,coefficient-loader,clock manager and analog/digital(A/D) or digital/analog(D/A) controller and other modules.The self-programmable VDF can provide the best solution for realization of digital filter algorithms,which are the low-pass,high-pass,band-pass and band-stop filter algorithms with variable frequency domain characteristics.The design examples with minimum 1 to maximum 32 taps FIR filter,based on Modelsim post-routed simulation and onboard running on XUPV5-LX110T,are provided to demonstrate the effectiveness of the proposed method.展开更多
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr...A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.展开更多
An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-dep...In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.展开更多
Field Programmable Gate Array(FPGA) and Single Instruction Multiple Data(SIMD) processing array share many architecture features. In both architectures, an array is employed to provide high speed computation. In this ...Field Programmable Gate Array(FPGA) and Single Instruction Multiple Data(SIMD) processing array share many architecture features. In both architectures, an array is employed to provide high speed computation. In this paper we show that the implementation of a Single Instruction Multiple Data (SIMD) machine the ABC 90 using the Field Programmable Gate Array (FPGA) is not completely suitable because of its characteristics. The comparison between the programmable gate arrays show that, they have many architectures features in common. Within this framework, we examine the differences and similarities between these array structures and touch upon techniques and lessons which can be done between these architectures in order to choose the appropriate Programmable gate array to implement a general purpose parallel computer. In this paper we introduce the principal of the Dynamically Programmable Date Array(DPGA) which combines the best feature of the FPGA and the SIMD arrays into a single array architecture. By the same way we show that the DPGA is more appropriate then the FPGA for wiring, hardwiring the general purpose parallel computers: SIMD and its implementation.展开更多
In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms...In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.展开更多
The drive towards shorter design cycles for analog integrated circuits has given impetus to the development of Field Programmable Analog Arrays(FPAAs),which are the analogue counterparts of Field Programmable Gate Arr...The drive towards shorter design cycles for analog integrated circuits has given impetus to the development of Field Programmable Analog Arrays(FPAAs),which are the analogue counterparts of Field Programmable Gate Arrays(FPGAs).In this paper,we present a new design methodology which using FPAA as a powerful analog front-end processing platform in the smart sensory microsystem.The proposed FPAA contains 16 homogeneous mixed-grained Configurable Analog Blocks(CABs) which house a variety of processing elements especially the proposed fine-grained Core Configurable Amplifiers(CCAs).The high flexible CABs allow the FPAA operating in both continuous-time and discrete-time approaches suitable to support variety of sensors.To reduce the nonideal parasitic effects and save area,the fat-tree interconnection network is adopted in this FPAA.The functionality of this FPAA is demonstrated through embedding of voltage and capacitive sensor signal readout circuits and a configurable band pass filter.The minimal detectable voltage and capacitor achieves 38 uV and 8.3 aF respectively within 100 Hz sensor bandwidth.The power consumption comparison of CCA in three applications shows that the FPAA has high power efficiency.And the simulation results also show that the FPAA has good tolerance with wide PVT variations.展开更多
The modelling, design and implementation of a high-speed programmable polyphase finite impulse response (FIR) filter with field programmable gate array (FPGA) technology are described. This FIR filter can run automati...The modelling, design and implementation of a high-speed programmable polyphase finite impulse response (FIR) filter with field programmable gate array (FPGA) technology are described. This FIR filter can run automatically according to the programmable configuration word including symmetry/asymmetry, odd/even taps, from 32 taps up to 256 taps. The filter with 12 bit signal and 12 bit coefficient word-length has been realized on a Xilinx VirtexⅡ-v1500 device and operates at the maximum sampling frequency of (160 MHz.)展开更多
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for...Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.展开更多
This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)fu...This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)functions,latch functions,and d flip flop(DFF)with enable and reset functions can be realized.Because PLE uses a choice of operational logic(COOL)approach for the operation of logic functions,it allows any logic circuit to be implemented at any ratio of combinatorial logic to register.This intrinsic property makes it close to the basic application specific integrated circuit(ASIC)cell in terms of fine granularity,thus allowing ASIC-like cell-based mappers to apply all their optimization potential.By measuring Sense-Switch pFLASH and PLE circuits,the results show that the“on”state driving current of the Sense-Switch pFLASH is about 245.52μA,and that the“off”state leakage current is about 0.1 pA.The programmable function of PLE works normally.The delay of the typical combinatorial logic operation AND3 is 0.69 ns,and the delay of the sequential logic operation DFF is 0.65 ns,both of which meet the requirements of the design technical index.展开更多
High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the impleme...High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.展开更多
We present a novel method to implement the radix-2 fast Fourier transform (FFT) algorithm on field programmable gate arrays (FPGA).The FFT architecture exploits parallelism by having more pipelined units in the stages...We present a novel method to implement the radix-2 fast Fourier transform (FFT) algorithm on field programmable gate arrays (FPGA).The FFT architecture exploits parallelism by having more pipelined units in the stages,and more parallel units within a stage.It has the noticeable advantages of high speed and more efficient resource utilization by employing four ganged butterfly engines (GBEs),and can be well matched to the placement of the resources on the FPGA.We adopt the decimation-infrequency (DIF) radix-2 FFT algorithm and implement the FFT processor on a state-of-the-art FPGA.Experimental results show that the processor can compute 1024-point complex radix-2 FFT in about 11 μs with a clock frequency of 200 MHz.展开更多
In this paper, the feasibility of embedding the direct torque control (DTC) of an induction machine into field programmable gate arrays (FPGA) is investigated. DTC of an induction machine is simulated in a MATLAB/...In this paper, the feasibility of embedding the direct torque control (DTC) of an induction machine into field programmable gate arrays (FPGA) is investigated. DTC of an induction machine is simulated in a MATLAB/Simulink environment using a Xilinx system generator. The resulting design has a flexible and modular structure where the designer can customize the hardware blocks by changing the number of inputs, outputs, and algorithm when it is compared to the designs implemented using classical microcontrollers and digital signal processors. With its flexibility, other control algorithms can easily be programmed and embedded into the FPGA. The above system has been implemented on Xilinx Spartan 3A DSP FPGA controller. Simulation and experimentation have been performed to prove the validity of the proposed methodology.展开更多
基金Science &Technology Plan Foundation of Hunan Province,China(No.2010F3102)Science Research Foundation of Hunan Province,China(No.08C392)
文摘In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper proposes a method for self-programmable variable digital filter(VDF) design based on field programmable gate array(FPGA).We implement a digital filter system by using custom embedded micro-processor,programmable finite impulse response(P-FIR) macro module,coefficient-loader,clock manager and analog/digital(A/D) or digital/analog(D/A) controller and other modules.The self-programmable VDF can provide the best solution for realization of digital filter algorithms,which are the low-pass,high-pass,band-pass and band-stop filter algorithms with variable frequency domain characteristics.The design examples with minimum 1 to maximum 32 taps FIR filter,based on Modelsim post-routed simulation and onboard running on XUPV5-LX110T,are provided to demonstrate the effectiveness of the proposed method.
基金the Natural Science Foundation of Hubei Province (No.2005ABA301)
文摘A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.
文摘Field Programmable Gate Array(FPGA) and Single Instruction Multiple Data(SIMD) processing array share many architecture features. In both architectures, an array is employed to provide high speed computation. In this paper we show that the implementation of a Single Instruction Multiple Data (SIMD) machine the ABC 90 using the Field Programmable Gate Array (FPGA) is not completely suitable because of its characteristics. The comparison between the programmable gate arrays show that, they have many architectures features in common. Within this framework, we examine the differences and similarities between these array structures and touch upon techniques and lessons which can be done between these architectures in order to choose the appropriate Programmable gate array to implement a general purpose parallel computer. In this paper we introduce the principal of the Dynamically Programmable Date Array(DPGA) which combines the best feature of the FPGA and the SIMD arrays into a single array architecture. By the same way we show that the DPGA is more appropriate then the FPGA for wiring, hardwiring the general purpose parallel computers: SIMD and its implementation.
基金Guangdong Province Science and Technology Guiding Project(2005B10101013)
文摘In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.
基金Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams,National High Technology Research and Develop Program of China(2012AA012301)National Science and Technology Major Project of China(2013ZX03006004)
文摘The drive towards shorter design cycles for analog integrated circuits has given impetus to the development of Field Programmable Analog Arrays(FPAAs),which are the analogue counterparts of Field Programmable Gate Arrays(FPGAs).In this paper,we present a new design methodology which using FPAA as a powerful analog front-end processing platform in the smart sensory microsystem.The proposed FPAA contains 16 homogeneous mixed-grained Configurable Analog Blocks(CABs) which house a variety of processing elements especially the proposed fine-grained Core Configurable Amplifiers(CCAs).The high flexible CABs allow the FPAA operating in both continuous-time and discrete-time approaches suitable to support variety of sensors.To reduce the nonideal parasitic effects and save area,the fat-tree interconnection network is adopted in this FPAA.The functionality of this FPAA is demonstrated through embedding of voltage and capacitive sensor signal readout circuits and a configurable band pass filter.The minimal detectable voltage and capacitor achieves 38 uV and 8.3 aF respectively within 100 Hz sensor bandwidth.The power consumption comparison of CCA in three applications shows that the FPAA has high power efficiency.And the simulation results also show that the FPAA has good tolerance with wide PVT variations.
文摘The modelling, design and implementation of a high-speed programmable polyphase finite impulse response (FIR) filter with field programmable gate array (FPGA) technology are described. This FIR filter can run automatically according to the programmable configuration word including symmetry/asymmetry, odd/even taps, from 32 taps up to 256 taps. The filter with 12 bit signal and 12 bit coefficient word-length has been realized on a Xilinx VirtexⅡ-v1500 device and operates at the maximum sampling frequency of (160 MHz.)
基金financially supported by the National Council for Scientific and Technological Development(CNPq,Brazil),Swedish-Brazilian Research and Innovation Centre(CISB),and Saab AB under Grant No.CNPq:200053/2022-1the National Council for Scientific and Technological Development(CNPq,Brazil)under Grants No.CNPq:312924/2017-8 and No.CNPq:314660/2020-8.
文摘Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.
基金supported by the National Natural Science Foundation of China(No.62174150)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20211040 and BK20211041)。
文摘This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)functions,latch functions,and d flip flop(DFF)with enable and reset functions can be realized.Because PLE uses a choice of operational logic(COOL)approach for the operation of logic functions,it allows any logic circuit to be implemented at any ratio of combinatorial logic to register.This intrinsic property makes it close to the basic application specific integrated circuit(ASIC)cell in terms of fine granularity,thus allowing ASIC-like cell-based mappers to apply all their optimization potential.By measuring Sense-Switch pFLASH and PLE circuits,the results show that the“on”state driving current of the Sense-Switch pFLASH is about 245.52μA,and that the“off”state leakage current is about 0.1 pA.The programmable function of PLE works normally.The delay of the typical combinatorial logic operation AND3 is 0.69 ns,and the delay of the sequential logic operation DFF is 0.65 ns,both of which meet the requirements of the design technical index.
基金the National Science Foundation of China(Nos.60934007 and 61074060)the Postdoctoral Science Foundation of China(No.20090460627)+2 种基金the Postdoctoral Scientific Program of Shanghai (No.10R21414600)the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070248004)the China Postdoctoral Science Foundation Special Support(No.201003272)
文摘High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.
文摘We present a novel method to implement the radix-2 fast Fourier transform (FFT) algorithm on field programmable gate arrays (FPGA).The FFT architecture exploits parallelism by having more pipelined units in the stages,and more parallel units within a stage.It has the noticeable advantages of high speed and more efficient resource utilization by employing four ganged butterfly engines (GBEs),and can be well matched to the placement of the resources on the FPGA.We adopt the decimation-infrequency (DIF) radix-2 FFT algorithm and implement the FFT processor on a state-of-the-art FPGA.Experimental results show that the processor can compute 1024-point complex radix-2 FFT in about 11 μs with a clock frequency of 200 MHz.
文摘In this paper, the feasibility of embedding the direct torque control (DTC) of an induction machine into field programmable gate arrays (FPGA) is investigated. DTC of an induction machine is simulated in a MATLAB/Simulink environment using a Xilinx system generator. The resulting design has a flexible and modular structure where the designer can customize the hardware blocks by changing the number of inputs, outputs, and algorithm when it is compared to the designs implemented using classical microcontrollers and digital signal processors. With its flexibility, other control algorithms can easily be programmed and embedded into the FPGA. The above system has been implemented on Xilinx Spartan 3A DSP FPGA controller. Simulation and experimentation have been performed to prove the validity of the proposed methodology.