期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on Modification of Non-limiting Water Range of Soil
1
作者 迟春明 《Agricultural Science & Technology》 CAS 2013年第11期1620-1623,1628,共5页
[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected ... [Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected as the lower limit of NLWR to replace the original water content of permanent wilting point or the water content under soil mechanical resistance of 2.0 MPa. NLWR could be calculated us-ing the minimum value of upper limit minus the maximum value of lower limit. [Re-sult] Compared with original NLWR or least limiting water range (LLWR), the modi-fied NLWR had more practical significance. When Db〉Db-thr, soil physical properties hindered the growth of crops, so the soil should be improved; when Db〉Db-thr, soil physical properties hindered the growth of crops, so-the soil should be improved; wtlen Db〈Db-thr, as long as the soil water content is within NLWR, soil physical properties had no effect on crop growth. NLWR at this time could be used as the basis for irrigation man- agement in farmland. [Conclusion] The study provides theoretical support and scientific basis for relevant researches about evolution rule and regulatory mechanisms of soil physical quality, relationship between soil physical quality and crop growth and yield, water-fertilizer-salt management of soil. 展开更多
关键词 field water capacity Critical point of aeration Critical point of waterpotential Critical point of mechanical resistance
下载PDF
Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil 被引量:8
2
作者 Yue ZHANG Jingsong YANG +2 位作者 Rongjiang YAO Xiangping WANG Wenping XIE 《Pedosphere》 SCIE CAS CSCD 2020年第5期694-702,共9页
Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weigh... Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period. 展开更多
关键词 field water capacity saline ice saturated hydraulic conductivity sodium adsorption ratio soil alkalinity
原文传递
Soil micromorphological and physical properties after application of composts with polyethylene and biocomponent-derived polymers added during composting 被引量:1
3
作者 Monika MIERZWA-HERSZTEK Krzysztof GONDEK +5 位作者 Altaf Hussain LAHORI MichałKOPEĆ Ryszard MAZUREK Tomasz ZALESKI Tomasz GŁ˛AB Jerzy WIECZOREK 《Pedosphere》 SCIE CAS CSCD 2021年第4期560-571,共12页
Composts are considered to be one of the best soil amendments. However, the effects of composts with added polymeric materials on soil physical,hydraulic, and micromorphological properties have not been widely discuss... Composts are considered to be one of the best soil amendments. However, the effects of composts with added polymeric materials on soil physical,hydraulic, and micromorphological properties have not been widely discussed. Changes in soil physical properties influence the numerous services that soils provide. We studied the impacts of composts with the addition of three different polymers(F1–F3) produced from polyethylene and thermoplastic corn starch on the physical, hydraulic, and micromorphological properties of two soils, a Cambic Phaeozem and a Luvic Phaeozem. Applying composts with polymers had limited or no significant effect on soil bulk density and porosity, but increased the field water capacity by 18%–82% and 3%–6% and the plant-available water content by 15%–23% and 4%–17% for the Cambic Phaeozem and Luvic Phaeozem, respectively. The application of composts with polymers had a greater effect on the Cambic Phaeozem than on the Luvic Phaeozem. It was suggested that the use of modified composts led to changes in soil physical properties and micromorphological features and this effect was dependent on the compost application rate. Composts made with the addition of composite synthetic and natural material-derived polymers during composting were found to be a composite mixture that can be successfully used in agriculture. 展开更多
关键词 composite mixture corn starch field water capacity plant-available water content POROSITY soil bulk density soil micromorphology soil water retention
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部