Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using...Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis.展开更多
This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork ...This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork and frozen pork were pre-blended with five levels of phosphate and made into emulsion-type sausage. The yield, hardness and total expressible fluid (TEF) were measured with texture profile analysis machine and pressiometer when emulsion-type sausage was produced. Meanwhile, hardness and purge loss (PL) were measured during 30 d storage. As emusion-type sausage made by pre-rigor meat, higher yield and relatively stable hardness could be found. It indicated that increasing of phosphate level caused an alleviatable effects in increasing of hardness when emulsion-type sausage made by pre-rigor meat, but opposite effects made by ageing meat or frozen meat. The distribution of PL of emulsion-type sausage was found to be affected by phosphate addition. Significant decrease of PL could not be obtained by increasing of phosphate level during storage. Pre-rigor meat improved WHC and texture of emulsion-type sausage. Problem of WHC and texture of emulsiontype sausage during storage could not be resolved by single use of phosphate at relatively higher level (3%) of NaCl.展开更多
In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wi...In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wilcox method (WM), the undisturbed soil pressure plate method (PUM) and the air-dried sieved soil pressure plate method (PDM) were compared to select a suitable laboratory measurement method. Results show that the FC values measured by PDM are greater than those measured by PUM, and the values measured by PUM are greater than those measured by WM. PUM is more suitable for the determination of FC in the study area. One regression equation between PUM and PDM has been established through which undisturbed soil can be replaced by air-dried sieved soil, which is easier to get, to measure FC. FCs vary from 23.50% to 37.00%, with an average of 31.65%, which differ greatly among the 23 black soil profiles. FC is found to be significantly positively correlated with the silt content, clay content and bulk density of the soil, but significantly negatively correlated with the sand content. An empirical pedotransfer function is established to estimate the FC using available soil physical and chemical properties.展开更多
Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable densi...Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.展开更多
Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framewor...Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.展开更多
This paper presents a simplified dynamic method based on the definition of field capacity. Two soil hydraulic characteristics models, the Brooks-Corey (BC) model and the van Genuchten (vG) model, and four soil dat...This paper presents a simplified dynamic method based on the definition of field capacity. Two soil hydraulic characteristics models, the Brooks-Corey (BC) model and the van Genuchten (vG) model, and four soil data groups were used in this study. The relative drainage rate, which is a unique parameter and independent of the soil type in the simplified dynamic method, was analyzed using the pressure-based method with a matric potential of -1/3 bar and the flux-based method with a drainage flux of 0.005 cm/d. As a result, the relative drainage rate of the simplified dynamic method was determined to be 3% per day. This was verified by the similar field capacity results estimated with the three methods for most soils suitable for cultivating plants. In addition, the drainage time calculated with the simplified dynamic method was two to three days, which agrees with the classical definition of field capacity. We recommend the simplified dynamic method with a relative drainage rate of 3% per day due to its simple application and clearly physically-based concept.展开更多
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine...This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.展开更多
We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to ...We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to the water-bearing capacity of the Ordovician strata is discussed. The minimum concentration of eleven (of 14 total) trace elements appears in the lower Majiagou formation. The maximum concentrations mainly appear in the Badou and Jiawang formations: eight maxima are located in Badou and four more are in Jiawang. The study of karst development and the water-bearing capacity of Ordovician strata shows that karst is well developed in the Majiagou formation and there is a consequent high water-bearing capacity in this formation: Badou and Jiawang formations are contrary to this situation. The results illustrate that the minimum concentrations of most trace elements within certain Ordovician formations can be taken as strong evidence for the existence of a well developed karst and a high water-bearing capacity.展开更多
Oscillating field stimulation(OFS)with regular alterations in the polarity of electric current is a unique,experimental approach to stimulate,support,and potentially guide the outgrowth of both sensory and motor nerve...Oscillating field stimulation(OFS)with regular alterations in the polarity of electric current is a unique,experimental approach to stimulate,support,and potentially guide the outgrowth of both sensory and motor nerve fibers after spinal cord injury(SCI).In previous experiments,we demonstrated the beneficial effects of OFS in a 4-week survival period after SCI.In this study,we observed the major behavioral,morphological,and protein changes in rats after 15 minutes of T9 spinal compression with a 40 g force,followed by long-lasting OFS(50μA),over a 8-week survival period.Three groups of rats were analyzed:rats after T9 spinal compression(SCI group);SCI rats subjected to implantation of active oscillating field stimulator(OFS+SCI group);and SCI rats subjected to nonfunctional OFS(nOFS+SCI group).Histopathological analysis of spinal tissue indicated a strong impact of epidural OFS on the reduction of tissue and myelin loss after SCI in the segments adjacent to the lesion site.Quantitative fluorescent analysis of the most affected areas of spinal cord tissue revealed a higher number of spared axons and oligodendrocytes of rats in the OFS+SCI group,compared with rats in the SCI and nOFS+SCI groups.The protein levels of neurofilaments(NF-l),growth-associated protein-43(marker for newly sprouted axons),and myelin basic protein in rats were signifiantly increased in the OFS+SCI group than in the nOFS+SCI and SCI groups.This suggests a supporting role of the OFS in axonal and myelin regeneration after SCI.Moreover,rats in the OFS+SCI group showed great improvements in sensory and motor functions than did rats in the nOFS+SCI and SCI groups.All these findings suggest that long-lasting OFS applied immediately after SCI can provide a good microenviroment for recovery of damaged spinal tissue by triggering regenreative processes in the acute phase of injury.展开更多
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X...Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.展开更多
Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in...Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.展开更多
Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock (Theragra chalcogramrna) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3...Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock (Theragra chalcogramrna) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of 〈1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore FSCH may have potential applications in the medicine and food industries.展开更多
Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlatio...Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlation between the parameters of chromatograph capacity factor (CCF) and molecular structural parameters. As a result, the correlation equation of the reversed phased high performance liquid chromatograph capacity factor to the intercept lgk'w and slope S of CCF were obtained, from which the correlation coefficients of lgk'w to the structural parameters are r^2 = 0.9596 and q^2 = 0.9262. While the correlation coefficients of the parameter S r^2 q^2 with structures are = 0.9750 and = 0.9252. Moreover, the effect of water as solvent on the present two models was also considered using SCRF method, and the result shows that the predicting capacity of correlation equation of lgkw' increases, while that of the model for S decreases slightly. Both two correlation equations achieved in this work are more advantageous than those using theoretical descriptors from molecular connectivity indices.展开更多
In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of ho...In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of homogeneous seabed soil beneath the rectangular footing are analyzed in detail. According to the equivalent plastic strain of soil under rectangular footing, an allowable velocity field of homogeneous seabed soil is reasonably constructed. Based on the plastic limit analysis theory of soil mass and by using the Mohr-Coulomb yield criterion, an upper bound solution of the ultimate bearing capacity of three-dimensional rectangular footing on general homogeneous seabed soil is derived, and a correction factor of ultimate bearing capacity of three-dimensional rectangular footing is given. To verify the rationality and applicability of this theoretical solution, some numerical solutions are achieved using the general-purpose FEM analysis package ABAQUS, and comparisons are made among the derived upper bound solution, the solution of Vesic, and the solution of Salgado et al. The results indicate that the upper bound solution of the three-dimensional shallowly embedded rectangular footing proposed in this paper is accurate in calculating the bearing capacity of homogeneous seabed soil. For undrained saturated clay foundation and sandy foundation with smaller internal friction angle, this upper bound solution can evaluate the ultimate bearing capacity of rectangular footing; with the gradual increase of the internal friction angle of the soil, the ultimate bearing capacity of the proposed upper bound solution is slightly higher than that of the rectangular footing.展开更多
In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged withi...In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged within a specified survey region is that to make the number of sensor elements as small as possible,meanwhile without deteriorating imaging quality.For this end,we propose a novel methodology of arranging sensors in an optimal manner,exploring the concept of information capacity developed originally in the communication society.The proposed scheme reduces mathematically the design of a sparse sensor array into solving a combinatorial optimization problem,which can be resolved efficiently using widely adopted Simultaneous Perturbation and Statistical Algorithm(SPSA).Three sets of numerical examples of designing optimal sensor array are provided to demonstrate the performance of proposed methodology.展开更多
In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface ...In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.展开更多
The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar il...The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar illumination. This situation explains the choice of concentration PV cell (C = 50 suns) in this study. However, the strong photogeneration of the carriers charge causes a high heat production by thermalization, collision and carriers charge braking due to the electric field induced by concentration gradient. This heat brings the heating of the PV cell base. That imposes the taking into account of the temperature influence in the concentrator PV cell operation. Moreover, with the proliferation of the magnetic field sources in the life space, it is important to consider its effect on the PV cell performances. Thus, when magnetic field and base temperature increase simultaneously, we observe a deterioration of the photovoltage, the electric power, the space charge region capacity, the fill factor and the conversion efficiency. However the photocurrent increases when the base temperature increases and the magnetic field strength decreases. It appears an inversion phenomenon in the evolution of the electrical parameters as a function of magnetic field for the values of magnetic field B> 4×10<sup>-4 </sup>T.展开更多
基金supported in part by the National Key Research and Development Program of China(No.2022YFB3305403)Project of basic research funds for central universities(2022CDJDX006)+1 种基金Talent Plan Project of Chongqing(No.cstc2021ycjhbgzxm0295)National Natural Science Foundation of China(No.52111530194)。
文摘Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis.
基金supported by the Key Technology R&D Program of China during the 11th Five-Year PlanPeriod (2006BAD05A15)
文摘This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork and frozen pork were pre-blended with five levels of phosphate and made into emulsion-type sausage. The yield, hardness and total expressible fluid (TEF) were measured with texture profile analysis machine and pressiometer when emulsion-type sausage was produced. Meanwhile, hardness and purge loss (PL) were measured during 30 d storage. As emusion-type sausage made by pre-rigor meat, higher yield and relatively stable hardness could be found. It indicated that increasing of phosphate level caused an alleviatable effects in increasing of hardness when emulsion-type sausage made by pre-rigor meat, but opposite effects made by ageing meat or frozen meat. The distribution of PL of emulsion-type sausage was found to be affected by phosphate addition. Significant decrease of PL could not be obtained by increasing of phosphate level during storage. Pre-rigor meat improved WHC and texture of emulsion-type sausage. Problem of WHC and texture of emulsiontype sausage during storage could not be resolved by single use of phosphate at relatively higher level (3%) of NaCl.
基金Under the auspices of National Natural Science Foundation of China(No.40671111)Major State Basic Research Development Program of China(No.2007CB407203)
文摘In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wilcox method (WM), the undisturbed soil pressure plate method (PUM) and the air-dried sieved soil pressure plate method (PDM) were compared to select a suitable laboratory measurement method. Results show that the FC values measured by PDM are greater than those measured by PUM, and the values measured by PUM are greater than those measured by WM. PUM is more suitable for the determination of FC in the study area. One regression equation between PUM and PDM has been established through which undisturbed soil can be replaced by air-dried sieved soil, which is easier to get, to measure FC. FCs vary from 23.50% to 37.00%, with an average of 31.65%, which differ greatly among the 23 black soil profiles. FC is found to be significantly positively correlated with the silt content, clay content and bulk density of the soil, but significantly negatively correlated with the sand content. An empirical pedotransfer function is established to estimate the FC using available soil physical and chemical properties.
基金The authors wish to thank the support from the‘Double Tops’Construction Independent Innovation Project of China University of Mining and Technology(Grant No.2018ZZCX04).
文摘Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.
基金Projects(51078359, 51208522) supported by the National Natural Science Foundation of ChinaProjects(20110491269, 2012T50708) supported by China Postdoctoral Science FoundationProject supported by Postdoctoral Science Foundation of Central South University, China
文摘Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.
基金supported by the National Natural Science Foundation of China(Grants No.51179083 and 91225302)
文摘This paper presents a simplified dynamic method based on the definition of field capacity. Two soil hydraulic characteristics models, the Brooks-Corey (BC) model and the van Genuchten (vG) model, and four soil data groups were used in this study. The relative drainage rate, which is a unique parameter and independent of the soil type in the simplified dynamic method, was analyzed using the pressure-based method with a matric potential of -1/3 bar and the flux-based method with a drainage flux of 0.005 cm/d. As a result, the relative drainage rate of the simplified dynamic method was determined to be 3% per day. This was verified by the similar field capacity results estimated with the three methods for most soils suitable for cultivating plants. In addition, the drainage time calculated with the simplified dynamic method was two to three days, which agrees with the classical definition of field capacity. We recommend the simplified dynamic method with a relative drainage rate of 3% per day due to its simple application and clearly physically-based concept.
文摘This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.
文摘We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to the water-bearing capacity of the Ordovician strata is discussed. The minimum concentration of eleven (of 14 total) trace elements appears in the lower Majiagou formation. The maximum concentrations mainly appear in the Badou and Jiawang formations: eight maxima are located in Badou and four more are in Jiawang. The study of karst development and the water-bearing capacity of Ordovician strata shows that karst is well developed in the Majiagou formation and there is a consequent high water-bearing capacity in this formation: Badou and Jiawang formations are contrary to this situation. The results illustrate that the minimum concentrations of most trace elements within certain Ordovician formations can be taken as strong evidence for the existence of a well developed karst and a high water-bearing capacity.
基金supported by grants of the Scientific Grant Agency of the Slovak Academy of Sciences:2/0098/20(JG)2/0145/21(NL)+3 种基金the Slovak Research and Development Agency:APVV19-0324(to NL)APVV-18-0163(MB)the Operational Programme Integrated Infrastructure for the project:Long-term strategic research of prevention, intervention and mechanisms of obesity and its comorbidities, IMTS:313011V344co-financed by the European Regional Development Fund”(JG)
文摘Oscillating field stimulation(OFS)with regular alterations in the polarity of electric current is a unique,experimental approach to stimulate,support,and potentially guide the outgrowth of both sensory and motor nerve fibers after spinal cord injury(SCI).In previous experiments,we demonstrated the beneficial effects of OFS in a 4-week survival period after SCI.In this study,we observed the major behavioral,morphological,and protein changes in rats after 15 minutes of T9 spinal compression with a 40 g force,followed by long-lasting OFS(50μA),over a 8-week survival period.Three groups of rats were analyzed:rats after T9 spinal compression(SCI group);SCI rats subjected to implantation of active oscillating field stimulator(OFS+SCI group);and SCI rats subjected to nonfunctional OFS(nOFS+SCI group).Histopathological analysis of spinal tissue indicated a strong impact of epidural OFS on the reduction of tissue and myelin loss after SCI in the segments adjacent to the lesion site.Quantitative fluorescent analysis of the most affected areas of spinal cord tissue revealed a higher number of spared axons and oligodendrocytes of rats in the OFS+SCI group,compared with rats in the SCI and nOFS+SCI groups.The protein levels of neurofilaments(NF-l),growth-associated protein-43(marker for newly sprouted axons),and myelin basic protein in rats were signifiantly increased in the OFS+SCI group than in the nOFS+SCI and SCI groups.This suggests a supporting role of the OFS in axonal and myelin regeneration after SCI.Moreover,rats in the OFS+SCI group showed great improvements in sensory and motor functions than did rats in the nOFS+SCI and SCI groups.All these findings suggest that long-lasting OFS applied immediately after SCI can provide a good microenviroment for recovery of damaged spinal tissue by triggering regenreative processes in the acute phase of injury.
基金supported by the National Natural Science Foundation of China(12371150,11971432)the Natural Science Foundation of Zhejiang Province(LY21G010003)+2 种基金the Management Project of"Digital+"Discipline Construction of Zhejiang Gongshang University(SZJ2022A012,SZJ2022B017)the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)the Scientific Research Projects of Universities in Anhui Province(2022AH050955)。
文摘Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.
基金This work was supported by the National Natural Science Foundation of China(41361012)the Postgraduate Research and Innovation Funding Project of Inner Mongolia Autonomous Region(B2018111951).
文摘Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.
基金supported by the High Technology Research and Development Program of China (No. 2006AA09Z438)the National Natural Science Foundation of China (No. 30871943).
文摘Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock (Theragra chalcogramrna) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of 〈1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore FSCH may have potential applications in the medicine and food industries.
基金This work was supported by the National Basic Research Program of China (2003CB415002) and the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu (04KJB150149)
文摘Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlation between the parameters of chromatograph capacity factor (CCF) and molecular structural parameters. As a result, the correlation equation of the reversed phased high performance liquid chromatograph capacity factor to the intercept lgk'w and slope S of CCF were obtained, from which the correlation coefficients of lgk'w to the structural parameters are r^2 = 0.9596 and q^2 = 0.9262. While the correlation coefficients of the parameter S r^2 q^2 with structures are = 0.9750 and = 0.9252. Moreover, the effect of water as solvent on the present two models was also considered using SCRF method, and the result shows that the predicting capacity of correlation equation of lgkw' increases, while that of the model for S decreases slightly. Both two correlation equations achieved in this work are more advantageous than those using theoretical descriptors from molecular connectivity indices.
基金supported by the Project of National Science and Technology Ministry (No. 2014BAB16B03)the National Natural Science Foundation of China (No. 51679224)
文摘In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of homogeneous seabed soil beneath the rectangular footing are analyzed in detail. According to the equivalent plastic strain of soil under rectangular footing, an allowable velocity field of homogeneous seabed soil is reasonably constructed. Based on the plastic limit analysis theory of soil mass and by using the Mohr-Coulomb yield criterion, an upper bound solution of the ultimate bearing capacity of three-dimensional rectangular footing on general homogeneous seabed soil is derived, and a correction factor of ultimate bearing capacity of three-dimensional rectangular footing is given. To verify the rationality and applicability of this theoretical solution, some numerical solutions are achieved using the general-purpose FEM analysis package ABAQUS, and comparisons are made among the derived upper bound solution, the solution of Vesic, and the solution of Salgado et al. The results indicate that the upper bound solution of the three-dimensional shallowly embedded rectangular footing proposed in this paper is accurate in calculating the bearing capacity of homogeneous seabed soil. For undrained saturated clay foundation and sandy foundation with smaller internal friction angle, this upper bound solution can evaluate the ultimate bearing capacity of rectangular footing; with the gradual increase of the internal friction angle of the soil, the ultimate bearing capacity of the proposed upper bound solution is slightly higher than that of the rectangular footing.
文摘In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged within a specified survey region is that to make the number of sensor elements as small as possible,meanwhile without deteriorating imaging quality.For this end,we propose a novel methodology of arranging sensors in an optimal manner,exploring the concept of information capacity developed originally in the communication society.The proposed scheme reduces mathematically the design of a sparse sensor array into solving a combinatorial optimization problem,which can be resolved efficiently using widely adopted Simultaneous Perturbation and Statistical Algorithm(SPSA).Three sets of numerical examples of designing optimal sensor array are provided to demonstrate the performance of proposed methodology.
文摘In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.
文摘The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar illumination. This situation explains the choice of concentration PV cell (C = 50 suns) in this study. However, the strong photogeneration of the carriers charge causes a high heat production by thermalization, collision and carriers charge braking due to the electric field induced by concentration gradient. This heat brings the heating of the PV cell base. That imposes the taking into account of the temperature influence in the concentrator PV cell operation. Moreover, with the proliferation of the magnetic field sources in the life space, it is important to consider its effect on the PV cell performances. Thus, when magnetic field and base temperature increase simultaneously, we observe a deterioration of the photovoltage, the electric power, the space charge region capacity, the fill factor and the conversion efficiency. However the photocurrent increases when the base temperature increases and the magnetic field strength decreases. It appears an inversion phenomenon in the evolution of the electrical parameters as a function of magnetic field for the values of magnetic field B> 4×10<sup>-4 </sup>T.