We know from Noether’s theorem that there is a conserved charge for every continuous symmetry. In General Relativity, Killing vectors describe the spacetime symmetries and to each such Killing vector field, we can as...We know from Noether’s theorem that there is a conserved charge for every continuous symmetry. In General Relativity, Killing vectors describe the spacetime symmetries and to each such Killing vector field, we can associate conserved charge through stress-energy tensor of matter which is mentioned in the article. In this article, I show that under simple set of canonical transformation of most general class of Bogoliubov transformation between creation, annihilation operators, those charges associated with spacetime symmetries are broken. To do that, I look at stress-energy tensor of real scalar field theory (as an example) in curved spacetime and show how it changes under simple canonical transformation which is enough to justify our claim. Since doing Bogoliubov transformation is equivalent to coordinate transformation which according to Einstein’s equivalence principle is equivalent to turn on effect of gravity, therefore, we can say that under the effect of gravity those charges are broken.展开更多
Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D p...Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).展开更多
We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem wit...We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.展开更多
A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppo...A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.展开更多
A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identiti...A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identities (GNI)) for variant system under the infinite continuous group of field theory in canonical formalism are derived. The strong and weak conservation laws in canonical formalism are also obtained. It is pointed out that some variant systems also have Dirac constraint. Based on the canonical action, the generalized Poincaré-Cartan integral invariant (GPCⅡ) for singular high-order Lagrangian in the field theory is deduced. Some confusions in literafure are clarified. The GPCⅡ connected with canonical equations and canonical transformation are discussed.展开更多
文摘We know from Noether’s theorem that there is a conserved charge for every continuous symmetry. In General Relativity, Killing vectors describe the spacetime symmetries and to each such Killing vector field, we can associate conserved charge through stress-energy tensor of matter which is mentioned in the article. In this article, I show that under simple set of canonical transformation of most general class of Bogoliubov transformation between creation, annihilation operators, those charges associated with spacetime symmetries are broken. To do that, I look at stress-energy tensor of real scalar field theory (as an example) in curved spacetime and show how it changes under simple canonical transformation which is enough to justify our claim. Since doing Bogoliubov transformation is equivalent to coordinate transformation which according to Einstein’s equivalence principle is equivalent to turn on effect of gravity, therefore, we can say that under the effect of gravity those charges are broken.
文摘Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).
文摘We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.
文摘A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.
基金Project supported by the National Natural Science Foundation of China and Beijing Natural Science Foundation.
文摘A generalized first Noether theorem (GFNT) originating from the invariance under the finite continuous group for singular high-order Lagrangian and a generalized second Noether theorem (or generalized Noether identities (GNI)) for variant system under the infinite continuous group of field theory in canonical formalism are derived. The strong and weak conservation laws in canonical formalism are also obtained. It is pointed out that some variant systems also have Dirac constraint. Based on the canonical action, the generalized Poincaré-Cartan integral invariant (GPCⅡ) for singular high-order Lagrangian in the field theory is deduced. Some confusions in literafure are clarified. The GPCⅡ connected with canonical equations and canonical transformation are discussed.