期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method 被引量:1
1
作者 司纪凯 陈昊 +2 位作者 汪旭东 焦留成 袁世鹰 《Journal of Coal Science & Engineering(China)》 2008年第1期147-151,共5页
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the... Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results. 展开更多
关键词 permanent magnet linear synchronous motor sinusoidal pulse width modula-tion (SPWM) voltage source inverter CHARACTERISTICS field-circuit coupled adaptive time-stepping finite element method
下载PDF
Research on Simulation Methods of Electric Field Intensity on Surface of 10 kV Cable Joint 被引量:1
2
作者 Ruxin Zhang Jun Xiong +9 位作者 Zheng Wu Lei Liao Mingyan Wu Gang Du Xueyou Huang Wenpei Jin Haiming Li Jian Zhang Wenli Cheng Binxian Lu 《Energy and Power Engineering》 2020年第4期37-45,共9页
The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field... The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints. 展开更多
关键词 Cable JOINTS Electric FIELD INTENSITY EQUIVALENT CIRCUIT METHOD field-circuit coupling METHOD finite element Simulation Software
下载PDF
Dynamic performance analysis model of high-reliability EMS-Maglev system
3
作者 FANG You-tong YAO Ying-ying 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第3期412-415,共4页
In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power sys... In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis. 展开更多
关键词 EMS-Maglev system field-circuit coupled Movement finite element
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部