期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Particle captured by a field-modulating vortex through dielectrophoresis force
1
作者 Bing Yan Bo Chen +1 位作者 Zerui Peng Yong-Liang Xiong 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期382-391,共10页
In microfluidic technology, dielectrophoresis(DEP) is commonly used to manipulate particles. In this work, the fluid–particle interactions in a microfluidic system are investigated numerically by a finite difference ... In microfluidic technology, dielectrophoresis(DEP) is commonly used to manipulate particles. In this work, the fluid–particle interactions in a microfluidic system are investigated numerically by a finite difference method(FDM) for electric field distribution and a lattice Boltzmann method(LBM) for the fluid flow. In this system, efficient particle manipulation may be realized by combining DEP and field-modulating vortex. The influence of the density(ρ_(p)), radius(γ), and initial position of the particle in the y direction(y_(p0)), and the slip velocity(u_(0)) on the particle manipulation are studied systematically. It is found that compared with the particle without action of DEP force, the particle subjected to a DEP force may be captured by the vortex over a wider range of parameters. In the y direction, as ρ_(p) or γ increases, the particle can be captured more easily by the vortex since it is subjected to a stronger DEP force. When u_(0) is low, particle is more likely to be captured due to the vortex–particle interaction. Furthermore, the flow field around the particle is analyzed to explore the underlying mechanism. The results obtained in the present study may provide theoretical support for engineering applications of field-controlled vortices to manipulate particles. 展开更多
关键词 field-modulating vortex dielectrophoresis fluid–particle interactions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部