Empty categories,which lack phonological form and hence are not visible in the phonetic representation of the sentence,have both syntactic and semantic properties.Null subjects PRO and pro are base-generated empty cat...Empty categories,which lack phonological form and hence are not visible in the phonetic representation of the sentence,have both syntactic and semantic properties.Null subjects PRO and pro are base-generated empty categories.This thesis,based on Chomsky's theory about empty categories and research achievements made by Chinese scholars,attempts to analyze the liandong(Serial Verb) construction from Figure and Ground perspective.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of...The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.展开更多
In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for...In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.展开更多
We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has...We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].展开更多
In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the...In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.展开更多
Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution ...Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.展开更多
To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean d...To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.展开更多
Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social ...Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.展开更多
We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate syste...We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.展开更多
Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existi...Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.展开更多
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de...The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.展开更多
This study explored the construction of power relations in the cognitive assessment of older adults within the Chinese clinical context.Data is derived from audio and video recordings that nine older adults produced i...This study explored the construction of power relations in the cognitive assessment of older adults within the Chinese clinical context.Data is derived from audio and video recordings that nine older adults produced in the cognitive assessment of the Chinese version of the Montreal Cognitive Assessment-Basic(MoCA-B),which were then annotated and analyzed from a multimodal pragmatic perspective.The study reveals that examiners and older adults employed various speech acts to achieve distinct communicative goals,with power relations between them being reflected through these speech acts.Examiners tend to claim high power,utilizing discourse strategies such as request,interruption,evaluation,rhetorical questions,and directive speech acts.In contrast,older adults assert high power through directive speech acts,rhetorical questions,and interruptions.Both parties also exhibit low power by using confirming questions and explanations.Additionally,gestures,smiles,prosody features,and other non-verbal communicative resources are synergistically employed to exercise power.The interactive mechanism of constructing power relations reveals that age affects older adults’power relations construction even in a professional setting of the Chinese context.The negotiation between the advanced age of older adults and the expertise of examiners jointly shapes power relations in their interactions.展开更多
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stabilit...In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.展开更多
In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding proce...In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.展开更多
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
文摘Empty categories,which lack phonological form and hence are not visible in the phonetic representation of the sentence,have both syntactic and semantic properties.Null subjects PRO and pro are base-generated empty categories.This thesis,based on Chomsky's theory about empty categories and research achievements made by Chinese scholars,attempts to analyze the liandong(Serial Verb) construction from Figure and Ground perspective.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金supported by the National Natural Science Foundation of China(Nos.U1804263,U1736214,62172435)the Zhongyuan Science and Technology Innovation Leading Talent Project(No.214200510019).
文摘The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.
文摘In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12175025,12247129,and 12347101)the Graduate Research and Innovation Foundation of Chongqing,China(Grant No.ydstd1912)the Foundation of Chongqing Normal University(Grant No.24XLB015)。
文摘We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].
文摘In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.
文摘Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.
基金the Sichuan Science and Technology Program(Nos.23ZHCG0049,2023YFG0078,23ZHCG0030,2021ZDZX0007)SCU-SUINING Project(2022CDSN-14).
文摘To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.
基金supported by the NationalNatural Science Foundation of China(61972136)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T201410,T2020017)+1 种基金the Natural Science Foundation of Xiaogan City(XGKJ2022010095,XGKJ2022010094)the Science and Technology Research Project of Education Department of Hubei Province(No.Q20222704).
文摘Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.
基金Industrial Support and Program Project of Universities in Gansu Province(No.2022CYZC-30)National Natural Science Foundation of China(Nos.42430108,41930101)China Scholarship Council(No.202306180085).
文摘We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.
基金supported by the National Natural Science Foundation of China(Grant No.62161025)the Project of Scientific and Technological Innovation Base of Jiangxi Province(Grant No.20203CCD46008)the Jiangxi Provincial Key Laboratory of Fusion and Information Control(Grant No.20171BCD40005).
文摘Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
基金supported by the Technology Projects of Guizhou Province under Grant[2024]003National Natural Science Foundation of China(GrantNos.62166007,62066008,62066007)Guizhou Provincial Science and Technology Projects under Grant No.ZK[2023]300.
文摘The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.
文摘This study explored the construction of power relations in the cognitive assessment of older adults within the Chinese clinical context.Data is derived from audio and video recordings that nine older adults produced in the cognitive assessment of the Chinese version of the Montreal Cognitive Assessment-Basic(MoCA-B),which were then annotated and analyzed from a multimodal pragmatic perspective.The study reveals that examiners and older adults employed various speech acts to achieve distinct communicative goals,with power relations between them being reflected through these speech acts.Examiners tend to claim high power,utilizing discourse strategies such as request,interruption,evaluation,rhetorical questions,and directive speech acts.In contrast,older adults assert high power through directive speech acts,rhetorical questions,and interruptions.Both parties also exhibit low power by using confirming questions and explanations.Additionally,gestures,smiles,prosody features,and other non-verbal communicative resources are synergistically employed to exercise power.The interactive mechanism of constructing power relations reveals that age affects older adults’power relations construction even in a professional setting of the Chinese context.The negotiation between the advanced age of older adults and the expertise of examiners jointly shapes power relations in their interactions.
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
文摘In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.
基金supported by Major Special Projects of Science and Technology in Fujian Province,(Grant No.2020HZ03018)Natural Science Foundation of Fujian Province(Grant No.2020J01873).
文摘In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.