期刊文献+
共找到446篇文章
< 1 2 23 >
每页显示 20 50 100
Frontogenesis and Frontolysis of a Cold Filament Driven by the Cross-Filament Wind and Wave Fields Simulated by a Large Eddy Simulation
1
作者 Guojing LI Dongxiao WANG +3 位作者 Changming DONG Jiayi PAN Yeqiang SHU Zhenqiu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期509-528,共20页
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w... The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis. 展开更多
关键词 cold filament FRONTOGENESIS FRONTOLYSIS large eddy simulation
下载PDF
Plasma potential measurements using an emissive probe made of oxide cathode
2
作者 李建泉 马海杰 陆文琪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期571-577,共7页
A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparis... A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparison with a traditional tungsten emissive probe,including the operating temperature,the electron emission capability and the plasma potential measurement.Studies of the operating temperature and electron emission capability show that the tungsten emissive probe usually works at a temperature of 1800 K-2200 K while the oxide cathode emissive probe can function at about 1200 K-1400 K.In addition,plasma potential measurements using the oxide cathode emissive probe with different techniques have been accomplished in microwave electron cyclotron resonance plasmas with different discharge powers.It is found that a reliable plasma potential can be obtained using the improved inflection point method and the hot probe with zero emission limit method,while the floating point method is invalid for the oxide cathode emissive probe. 展开更多
关键词 emissive probe oxide cathode plasma potential filament temperature
下载PDF
Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
3
作者 Hao Yin Yanting Li +4 位作者 Zhiying Tian Qichao Li Chenhui Jiang Enfu Liang Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期432-446,共15页
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg... Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy. 展开更多
关键词 Flexible piezoelectric filaments ANISOTROPIC Ultra-high sensitivity Structural health detection Texture recognition
下载PDF
Effects of nano-metal oxide additives on ignition and combustion properties of MICs-boron rich fuels
4
作者 Liang Hu Danyang Liu +5 位作者 Kun Yang Jianying Lu Chao Shi Jianyu Wang Xinhang Liu Lang Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期157-167,共11页
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ... Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants. 展开更多
关键词 Boron-rich fuel Mechanical ball milling Electrically heated filament Laser-induced combustion
下载PDF
Simple procedure for assessing diffuse subarachnoid hemorrhage successfully created using filament perforation method in mice
5
作者 Tatsushi Mutoh Ryota Tochinai +3 位作者 Hiroaki Aono Masayoshi Kuwahara Yasuyuki Taki Tatsuya Ishikawa 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期77-81,共5页
The murine model of subarachnoid hemorrhage(SAH)is a valuable experimental tool for investigating molecular and cellular mechanisms,and the endovascular filament perforation technique can be used to simulate prominent... The murine model of subarachnoid hemorrhage(SAH)is a valuable experimental tool for investigating molecular and cellular mechanisms,and the endovascular filament perforation technique can be used to simulate prominent pathophysiological features observed after human SAH;however,current validation methods for assessing an appropriate SAH model are limited.Here,we introduce a simple procedure for se-lecting a mouse model of diffuse SAH.SAH was induced in 24 mice using a standard filament perforation method.After confirming survival at 24 h,SAH was scored 0-1 based on T2*-weighted images on whole-brain magnetic resonance imaging(MRI)and visual surveillance of the cisterna magna(CM)through the dura mater.The CM-based SAH grading correlated well with a reference parameter defined by extracted brain(r^(2)=0.53,p<0.0001).The receiver operating characteristic curve revealed a sensi-tivity of 85%and a specificity of 91%for detecting diffuse SAH,with a similar area under the curve(0.89±0.06[standard error of the mean])as the MRI-based grading(0.72±0.10,p=0.12).Our data suggest that confirming an SAH clot in the CM is a valuable way to select a clinically relevant diffuse SAH model that can be used in future experimental studies. 展开更多
关键词 cisterna magna clot distribution filament perforation mouse model subarachnoid hemorrhage
下载PDF
A Confined Two-peaked Solar Flare Observed by EAST and SDO
6
作者 Liang Zhang Ruisheng Zheng +6 位作者 Zhike Xue Changhui Rao Qing Lin Zhimao Du Jiawen Yao Libo Zhong Yao Chen 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期71-83,共13页
The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature th... The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament. 展开更多
关键词 Sun:activity Sun:corona Sun:flares Sun:magnetic fields Sun:filaments prominences Online material:animations
下载PDF
Identification of Stability Domains for Flow Parameters in Fused Filament Fabrication Using Acoustic Emission
7
作者 Zhen Li Lei Fu +2 位作者 Xinfeng Zou Baoshan Huang Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第3期225-235,共11页
In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow sta... In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states. 展开更多
关键词 acoustic emission center frequency fast kurtogram fused filament fabrication stability domains
下载PDF
High-Order Spatial FDTD Solver of Maxwell’s Equations for Terahertz Radiation Production
8
作者 Abdelrahman Mahdy 《Journal of Applied Mathematics and Physics》 2024年第4期1028-1042,共15页
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament... We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. 展开更多
关键词 The Finite-Difference-Time-Domain Terahertz Radiation Production Filamentation of Femtosecond Laser Maxwell’s Equations Solution
下载PDF
Numerical simulation and printability analysis of fused deposition modeling with dual-temperature control 被引量:2
9
作者 Xiaodan Huo Bin Zhang +2 位作者 Qianglong Han Yong Huang Jun Yin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第2期174-188,共15页
Ideal tissue engineering scaffolds need interconnected pores and high porosity to enable cell survival,migration,proliferation,and differentiation.However,obtaining a high-resolution structure is difficult with tradit... Ideal tissue engineering scaffolds need interconnected pores and high porosity to enable cell survival,migration,proliferation,and differentiation.However,obtaining a high-resolution structure is difficult with traditional one-temperature control fused deposition modeling(FDM).In this study,we propose a dual-temperature control method to improve printability.A numerical model is developed in which the viscosity is a function of temperature and shear rate to study the influence of two different temperature control modes.Quantitative tests are used to assess filament formation and shape fidelity,including one-dimensional filament printing,deposition at corners,fusion,and collapse.By using dual-temperature control,the width of the deposited poly(ε-caprolactone)filament is reduced to 50μm.The comparative results of both the experimental method and numerical simulation suggest that the dual-temperature control FDM can manufacture spatially arranged constructs and presents a promising application in tissue engineering。 展开更多
关键词 Fused deposition modeling(FDM) Dual-temperature control Filament deposition Printing resolution VISCOSITY
下载PDF
Strain-Rate Dependency of a Unidirectional Filament Wound Composite under Compression
10
作者 Stepan Konev Victor A.Eremeyev +5 位作者 Hamid M.Sedighi Leonid Igumnov Anatoly Bragov Aleksandr Konstantinov Ayaulym Kuanyshova Ivan Sergeichev 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2149-2161,共13页
This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactu... This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactured through the filament winding of flat plates.To establish the strain rate dependencies of the strength and elastic modulus of the material,dynamic tests were carried out using a drop tower,the Split Hopkinson Pressure Bar method,and standard static tests.The samples were loaded both along and perpendicular to the direction of the reinforcing fiber.The applicability of the obtained samples for static and dynamic tests was confirmed through finite elementmodeling and the high-speed imaging of the deformation and failure of samples during testing.As a result of the conducted experimental studies,static and dynamic stress-strain curves,time dependencies of deformation and the stress and strain rates of the samples during compression were obtained.Based on these results,the strain rate dependencies of the strength and elasticity modulus in the strain rate range of 0.001-6001/s are constructed.It is shown that the strain rate significantly affects the strength and deformation characteristics of the unidirectional carbon fiber composites under compression.An increase in the strain rate by 5 orders of magnitude increased the strength and elastic modulus along the fiber direction by 42%and 50%,respectively.Perpendicular loading resulted in a strength and elastic modulus increase by 58%and 50%,respectively.The average strength along the fibers at the largest studied strain rate was about 1000MPa.The obtained results can be used to design structural elements made of polymer composite materials operating under dynamic shock loads,as well as to build models of mechanical behavior and failure criteria of such materials,taking into account the strain rate effects. 展开更多
关键词 High strain rate COMPOSITES filament winding dynamic strength Split Hopkinson Pressure Bar compression
下载PDF
LyαEmission Enhancement Associated with Soft X-Ray Microflares
11
作者 Zheng-Yuan Tian Li Feng +5 位作者 Lei Lu Fan-Xiaoyu Xia Yang Su Wei-Qun Gan Hui Li Yue Zhou 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第6期116-133,共18页
Lyα(Lyα,1216 A)is the strongest emission line in the solar ultraviolet spectrum.In the present work,we obtained a Lyαenhancement catalog covering flares larger than B1 class from the GOES/EUVS data during 2010-2016... Lyα(Lyα,1216 A)is the strongest emission line in the solar ultraviolet spectrum.In the present work,we obtained a Lyαenhancement catalog covering flares larger than B1 class from the GOES/EUVS data during 2010-2016.We focused on the 242 B-class events which are less investigated,however,show non-negligible Lyαemission enhancement.We found that on average the Lyαpeak of B-class flares is 0.85%stronger than the background.For the flare energetics,it is found that the weaker the soft X-ray(SXR)flare,the larger the ratio of the radiated energy in Lyαto SXR.Using the RHESSI data and multi-wavelength observations taken by SDO-AIA,we diagnose the thermal and non-thermal properties of several flares.Three case studies show that the coincidence of the Lyαpeak with the SXR time-derivative peak is not a sufficient condition of the nonthermal property of a Lyαmicroflare.The Lyαenhancement in the microflares may be caused by the nonthermal electron beams or/and thermal conduction.However for typeⅢevents,we found that the delay of the Lyαpeak with respect to the SXR peak can be attributed to either the Lyαemission from a filament erupted or the cooling of the thermal plasma in flare loops.Furthermore,interestingly the Lyαemission from filaments can not only occur in the decay phase of the flare,but also in the preflare phase.In this case,the Lyαemission was originated from an erupted filament which probably initiated the flare. 展开更多
关键词 Sun:flares Sun:chromosphere Sun:UV radiation Sun:filaments PROMINENCES
下载PDF
Rapid Preparation of Filamentous Fungal DNA for PCR Analysis by Ultrasonic Treatment
12
作者 Gui Yan-ling Han Jie Zhao Jie-hong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第2期89-96,共8页
A simple method to prepare of DNA template suitable for PCR amplification from filamentous fungi will be valuable for improving experimental efficiency.Here,a method was developed which just needed ultrasonic treatmen... A simple method to prepare of DNA template suitable for PCR amplification from filamentous fungi will be valuable for improving experimental efficiency.Here,a method was developed which just needed ultrasonic treatment of the mycelium at usual condition,and the produced solution could directly be used as DNA template for internal transcribed spacer(ITS)amplification successfully.The PCR could be improved by additional treatment of 60℃water baths,but was not centrifugation.When the template amount was 0.5-2μL and the ultrasonic time was 7-11 min,there was no distinctly influences on PCR.The method was commonly used for M.purpureus,I.cicadae,Lentinula sp.,Flammul sp.and Dictyophora sp.etc.to detect target sequences of ITS,hygromycin resistance gene(Hyg),CRISPR-associated protein 9(Cas9),Citrinin gene C(CtnC),Citrinin gene D(CtnD),large subunit rRNA gene(NL),and so on.The method could provide a simple,rapid,safe and economic approach to prepare the DNA template for large-scale PCR of the special filamentous fungi materials. 展开更多
关键词 filamentous fungi rapid PCR DNA template preparation ultrasonic treatment
下载PDF
Development and Evaluation of Recycled Polypropylene and Bean Pod Powder Composite Biomaterial for Fused Filament Fabrication
13
作者 Felix Sotohou James W. Mwangi +1 位作者 James M. Mutua Erick K. Ronoh 《Advances in Materials Physics and Chemistry》 CAS 2023年第3期31-48,共18页
Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as f... Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as fuel or fertilizer, and the rest of this waste is left in the environment or is burned, resulting in environmental and air pollution. For proper disposal, plastic and agricultural waste can be used in the manufacture of composites as raw materials. In this study, we had evaluated the use of bean pod powder (BPp) was used as natural reinforcing filler in recycled polypropylene (rPP) based composites. BPp/rPP composite filaments were developed using the extrusion method and the samples were printed by Fused Filament Fabrication (FFF). Composites with rPP matrix containing different weight fractions of BPp (5%, 10% and 15%) were fabricated to observe and compare the mechanical properties (tensile, flexural, and compressive strength) of the filament composites. In addition, the filament surface was analyzed for roughness and particle size of bean pod powder. The results established that BPp/rPP composites exhibited better tensile, flexural, and compressive strength than rPP and pure PP. By adding 5 wt% BPp, the tensile strength of rPP increased from 20.4 MPa to 22.8 MPa. The highest flexural strength (15.05 MPa) was obtained at 5 wt% BPp among all composites and the highest compressive strength (24.5 MPa), was obtained at 10 wt% BPp. Therefore, it can be concluded that by carefully selecting the ratio of BPp to bean pod powder, it is therefore possible to positively influence the mechanical properties of the resulting composite. 展开更多
关键词 POLLUTION Composite Fused Filament Fabrication Mechanical Properties
下载PDF
Study on the Presence of Filament Yarn in Jamdani Saree in Bangladesh
14
作者 Engr. Mohammed Rubaiyat Chowdhury Engr. Ayub Nabi Khan Rahat Hossain 《Journal of Textile Science and Technology》 2023年第4期253-257,共5页
Jamdani weaving is one of the oldest heredities of Bangladesh. From the beginning 100% cotton yarn was used to produce high quality jamdani saree. The weavers were the finest with weaving skills. Higher yarn count yar... Jamdani weaving is one of the oldest heredities of Bangladesh. From the beginning 100% cotton yarn was used to produce high quality jamdani saree. The weavers were the finest with weaving skills. Higher yarn count yarns were used to weave the jamdani saree. In course of time at present manmade fibres are also used to produce jamdani saree. The use of filament yarn may have eased the manufacturing difficulties, but the jamdani saree is missing its originality without 100% cotton. In this project, random jamdani saree sample was collected to identify the fibre composition. Samples of filament were also collected from the manufacturer and tested. It was evident that instead of cotton yarn in warp and weft silk and polyester filament yarn were used. 展开更多
关键词 Jamdani SUSTAINABILITY Muslin and Filament Yarn
下载PDF
The Kinematics Performance of Self-Propelled Full Freedom Filament in Wakes of Flow around Cylinder
15
作者 Jiyao Yang Yun Liu Guoyi He 《Journal of Applied Mathematics and Physics》 2023年第10期2913-2922,共10页
In vortex streets, the kinematics performance of self-propelled full freedom filament is closely related to the length and the position of filaments in the flow field. In this paper, the changes of passive propulsion ... In vortex streets, the kinematics performance of self-propelled full freedom filament is closely related to the length and the position of filaments in the flow field. In this paper, the changes of passive propulsion velocity and pressure of full-degree-of-freedom filaments after cylindrical wake were analyzed by 15 sets of experiments when the length and position of filaments were changed. The results show that the propulsive velocity of the filament, it approximately increases first and then decreases with the filament length increasing, and the further away from the center of the cylinder, the smaller the propulsive velocity of the filament. In addition, the longer the filament length and the further it is from the center of the cylinder, the lower the pressure around the filament. Experiments show that filaments without energy input can obtain energy from the surrounding flow field to maintain self-propelled motion. Studying the influence of length and position on the kinematics of filaments is helpful to provide a reference for revealing the hydrodynamic mechanism on passive propulsion process and developing low resistance energy harvesting device in swimming fish movement. 展开更多
关键词 Length Position Change Full Freedom Filaments Passive Propulsion
下载PDF
Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and Cons—A Review
16
作者 Khanh Q. Nguyen Pascal Y. Vuillaume +4 位作者 Lei Hu Jorge López-Beceiro Patrice Cousin Saïd Elkoun Mathieu Robert 《Materials Sciences and Applications》 2023年第3期148-185,共38页
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing... In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study. 展开更多
关键词 Additive Manufacturing 3D Printing Fused Filament Deposition (FDM) Manufacturing Recycled Bio-Based Blended Materials INTERLAYER
下载PDF
Equilibrium Energy and Entropy of Vortex Filaments in the Context of Tornadogenesis and Tornadic Flows
17
作者 Pavel Bělík Douglas P. Dokken +3 位作者 Mikhail M. Shvartsman Eric Bibelnieks Robert Laskowski Alek Lukanen 《Open Journal of Fluid Dynamics》 2023年第3期144-176,共33页
In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the... In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow. 展开更多
关键词 Tornadogenesis Supercritical Vortices Vortex Filaments Negative Temperature Kinetic Energy ENTROPY Statistical Mechanics Equilibrium Statistics Self-Avoiding Walks Cubic Lattice Monte-Carlo Techniques Pivot Algorithm
下载PDF
Optimization of Extrusion Process Parameters of Recycled High-Density Polyethylene-Thermoplastic Starch Composite for Fused Filament Fabrication
18
作者 Grace Njeri Wamuti James Wamai Mwangi +2 位作者 Samuel Kabini Karanja Leif Micke Henning Zeidler 《Open Journal of Composite Materials》 2023年第4期69-86,共18页
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan... High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF. 展开更多
关键词 Additive Manufacturing (AM) Fused Filament Fabrication (FFF) High Density Polyethylene (HDPE) Thermoplastic Starch (TPS) Bio-Composite
下载PDF
Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD 被引量:4
19
作者 张建国 王新昶 +1 位作者 沈彬 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3181-3188,共8页
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio... The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films. 展开更多
关键词 hot filament chemical vapor deposition(HFCVD) diamond films WC-Co substrates deposition parameters
下载PDF
Diversity of filamentous fungi in organic layers of two forests in Zijin Mountain 被引量:3
20
作者 宋福强 田兴军 +4 位作者 李重琦 杨昌林 陈斌 郝杰杰 朱静 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第4期273-279,共7页
A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Q... A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Quercus variabilis forest, in Zijin Mountain(325?N, 11848?E), Nanjing, China. A total of 67 taxa comprising 56 Deuteromycetes, 3 Zygomycetes, 5 Asco-mycetes and 3 unidentified fungi were recognized from samples from the forest floor of the two forest types. The most abundant group was Deuteromycetes. The dominant genera in both forests were Alternaria sp., Aspergillus sp., Cladosporium sp., Mucor sp., Penicillium sp., Rhizopus sp., Gliocladium sp. and Trichoderma spp. The fungal diversity was higher in the mixed forest than that in Q. variabilis forest. For both forest types, the maximum fungal diversity was found in layer F and there existed significantly different in fungal diversity between layer F and layer L. In the mixed forest, richness of fungi isolated from needle litter (P. massoniana) was lower than that from leaf litter (L. formasana). The richness of fungi from needle litter increased with the in-crease of forest floor depth, but for leaf litter, the fungal diversity decreased with the depth of forest floor. The co-species of fungi from the two forest types, as well as from two kinds of litters in mixed forest, increased with the depth of the forest floor. The succession of fungi along with the process of decomposition was discussed here. The results also showed that litter quality was a critical factor affecting fungal diversity. 展开更多
关键词 Zijin Mountain Forest type Filamentous fungi DIVERSITY LITTER Quercus variabilis forest Pinus massoniana and Liguidambar formasana mixed fores
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部