In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the...In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.展开更多
In this study, freeze - fractured specimens of Allium cepa root tip meristems were examined under the scanning electron microscope (SEM). This technique permitted the visualization of the outer membrane of the nuclear...In this study, freeze - fractured specimens of Allium cepa root tip meristems were examined under the scanning electron microscope (SEM). This technique permitted the visualization of the outer membrane of the nuclear envelope with nuclear pore complexes and polyribosomes. Some of the cell nuclei prepared with this procedure had fissures of various widths on their nuclear envelopes through which the nuclear lamina-like filaments (LLF) underneath the nucleoplasmic side of the envelopes were clearly visible. The diameters of these filaments varied between 25 and 125 nm. Many of the LLFs showed granular thickenings at places, and were attached to the inner surface of nuclear envelope in some regions. Similar LLFs were also seen at the peripheries of the freeze -fractured faces of nuclei. Meanwhile,the spatial relation between the nuclear matrix filaments (NMF) and other nuclear structures (nucleoli, chromatin and peripheral lamina - like filaments) was revealed in these fractured preparations. In addition, the methods and techniques in studying the nuclear lamina morphology and the roles played by NMFs in activities of various nuclear structures were discussed in brief.展开更多
Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data obse...Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several paral- lel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10" were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s^-1 to 15.0 km s^-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter- streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.展开更多
A filament is a cool, dense structure suspended in the solar corona. The eruption of a filament is often associated with a coronal mass ejection(CME), which has an adverse effect on space weather. Hence,research on fi...A filament is a cool, dense structure suspended in the solar corona. The eruption of a filament is often associated with a coronal mass ejection(CME), which has an adverse effect on space weather. Hence,research on filaments has attracted much attention in the recent past. The tilt angle of active region(AR)magnetic bipoles is a crucial parameter in the context of the solar dynamo, which governs the conversion efficiency of the toroidal magnetic field to poloidal magnetic field. Filaments always form over polarity inversion lines(PILs), so the study of tilt angles for these filaments can provide valuable information about generation of a magnetic field in the Sun. We investigate the tilt angles of filaments and other properties using McIntosh Archive data. We fit a straight line to each filament to estimate its tilt angle. We examine the variation of mean tilt angle with time. The latitude distribution of positive tilt angle filaments and negative tilt angle filaments reveals that there is a dominance of positive tilt angle filaments in the southern hemisphere and negative tilt angle filaments dominate in the northern hemisphere. We study the variation of the mean tilt angle for low and high latitudes separately. Investigations of temporal variation with filament number indicate that total filament number and low latitude filament number vary cyclically, in phase with the solar cycle. There are fewer filaments at high latitudes and they also show a cyclic pattern in temporal variation. We also study the north-south asymmetry of filaments with different latitude criteria.展开更多
We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromos...We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromospheric reconnection which ejected cool and dense material with transverse velocity of about 21–28 km s-1 and initial Doppler velocity of 12 km s^-1. This surge is similar to the injection of newly formed filament materials from their footpoints, except that the surge here occurred in a relatively weak magnetic environment of 100 G. Thus, we discuss the possibility of filament material replenishment via the erupting mass in such a weak magnetic field, which is often associated with quiescent filaments. It is found that the local plasma can be heated up to about 1.3 times the original temperature, which results in an acceleration of about –0.017 km s^-2. It can lift the dense material up to 10 Mm and higher with an inclination angle smaller than 50°, namely the typical height of active region filaments, but it can hardly inject the material up to those filaments higher than 25 Mm, like some quiescent filaments. Thus, we think that the injection model does not work well in describing the formation of quiescent filaments.展开更多
We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23)...We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes.展开更多
Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile ...Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.展开更多
Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. Du...Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. During propagation, the two potential wells of the two filaments can merge into one or repel each other, depending on the initial phase difference between the two filaments. The study provides a simple description of the interacting filaments.展开更多
We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relat...We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relations Observatory. In the event, the two filaments rose high, interacted with each other, and finally were ejected along two different paths. We measure the bulk-flow velocity using spectroscopic data. We find significant outflows at the speed of a few hundreds of km s 1 during the filament eruption, and also some downflows at a few tens of km s-1 at the edge of the eruption region in the late stage of the eruption. The erupting material was composed of plasmas with a wide temperature range of 10-4–106 K. These results shed light on the filament nature and the coronal dynamics.展开更多
Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon fila...Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles.展开更多
This paper demonstrates the triggering and guiding of the stationary high voltage (HV) discharges at 5-40kV by using plasma filaments generated by femtosecond laser pulses in air. A significant reduction of the brea...This paper demonstrates the triggering and guiding of the stationary high voltage (HV) discharges at 5-40kV by using plasma filaments generated by femtosecond laser pulses in air. A significant reduction of the breakdown voltage threshold due to the pre-ionization of the air gap by laser filamentation is observed. The discharge experiments are performed by using laser pulses with different energy from 15-60 mJ. The electron density of filaments is detected by sonography method. The influence of the electron density of laser filaments on the triggering and guiding HV discharge is experimentally investigated. The results have shown that the behaviour of plasma filaments can strongly affect the efficiency of triggering and guiding HV discharge.展开更多
A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.Thi...A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.This is used to represent actin biopolymers,which are constituent elements of the cytoskeleton,a complex network-like structure that plays a fundamental role in shape morphology.An extension of the traditional immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal fluctuations in the fluid at smaller scales.By way of validation,the response of a single,massless,inextensible semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested numerical scheme and the resulting time-averaged contraction of the filament is compared to the theoretical value obtained from the worm-like chain model.展开更多
This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with ...This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crossing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.展开更多
Solar filaments,hypothermia and dense structures suspended in the solar corona are formed above the magnetic polarity inversion line.Polar crown filaments(PCFs)at high-latitude regions of the Sun are of profound signi...Solar filaments,hypothermia and dense structures suspended in the solar corona are formed above the magnetic polarity inversion line.Polar crown filaments(PCFs)at high-latitude regions of the Sun are of profound significance to the periodic variation of solar activities.In this paper,we statistically analyze PCFs by using full disk Ha data from 1912 to 2018,which were obtained by Kodaikanal Solar Observatory(KODA,India),National Solar Observatory(NSO,USA),Kanzelhohe Solar Observatory(KSO,Austria),Big Bear Solar Observatory(BBSO,USA),and Huairou Solar Observing Station(HSOS,China).We first manually identify PCFs from every solar image based on the centennial data,and record the latitude and other features corresponding to the PCFs.Then we plot the PCF latitude distribution as a function of time,which clearly shows that PCFs rush to the poles at the ascending phase of each solar cycle.Our results show that the filaments drift toward mid-latitude covering solar cycle 15 to 24 after the PCFs reach the highest latitudes.The poleward migration rates of PCFs are calculated in ten solar cycles,and the range is about 0.12 degree to 0.50 degree per Carrington Rotation(CR).We also investigate the north-south(N-S)asymmetry of migration rates and the normalized N-S asymmetry index.展开更多
This paper deals with a discussion of the morphological correlation between the photospheric transversal magnetic field (PTMF) observed at Beijing Observatory and the penumbral filaments (PF) observed at Yunnan Observ...This paper deals with a discussion of the morphological correlation between the photospheric transversal magnetic field (PTMF) observed at Beijing Observatory and the penumbral filaments (PF) observed at Yunnan Observatory in eight areas of the largest active region AR5395 for the period of 9-15 March 1989. The morphological correlation is rouphly divided in three grades:"consistence", "approach"and "cross", "consistence" means that the difference of the azimuthal angles of PTMF and PF is smaller than 20 ° ; "approach" means that the difference is in the range of 20 ° and 40 ° ; "cross" means that the difference is more than 40 ° . The statistical conclusions are:展开更多
Detailed investigations on the filamentary structures associated with the type-I edge-localized modes(ELMs) should be helpful for protecting the materials of a plasma-facing wall on a future large device.Related exp...Detailed investigations on the filamentary structures associated with the type-I edge-localized modes(ELMs) should be helpful for protecting the materials of a plasma-facing wall on a future large device.Related experiments have been carefully conducted in the Experimental Advanced Superconducting Tokamak(EAST) using combined Langmuir-magnetic probes.The experimental results indicate that the radially outward velocity of type-I ELMy filaments can be up to 1.7 kms^(-1) in the far scrape-off layer(SOL) region.It is remarkable that the electron temperature of these filaments is detected to be ~50eV,corresponding to a fraction of 1/6 to the temperature near the pedestal top,while the density ~3×10^(19)m^(-3) of these filaments could be approximate to the line-averaged density.In addition,associated magnetic fluctuations have been clearly observed at the same time,which show good agreement with the density perturbations.A localized current on the order of ~100kA could be estimated within the filaments.展开更多
This paper presents analytic solutions for the flow field of inviscid fluid induced by uniformly and rigidly moving multiple helical vortex filaments in a cylindrical pipe. The relative coordinate system is set on the...This paper presents analytic solutions for the flow field of inviscid fluid induced by uniformly and rigidly moving multiple helical vortex filaments in a cylindrical pipe. The relative coordinate system is set on the moving vortex filaments. The analytical solutions of the flow field are obtained on the assumption that the relative velocity field induced is time-independent and helically symmetrical. If the radius of the cylindrical pipe approaches infinity, these solutions are also available for unbounded space. The results show that both the absolute velocity field and pressure field are periodical in time, and may reduce to time-independent when the helical vortex filaments are immobile or slip along the filaments themselves. Furthermore, the solution of velocity field is reduced to Okulov's formula for the case of a single static vortex filament in a cylindrical pipe. The calculated locations of pressure peak and valley on the pipe wall agree with experimental results.展开更多
In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. ...In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise.The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.展开更多
We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation o...We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.展开更多
Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Obje...Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Objectives: To establish an in vitro infection model of M. pachydermatis-exposed RK13 cells in order to evaluate cell morphological changes as well as changes in the structure of actin filaments. Methods: Cultures of RK13 cells were infected with M. pachydermatis, alterations caused by the yeast were evaluated by optical and fluorescence microscopy. Results: M. pachydermatis adheres itself to the cell and produces the formation of multiple agglomerates that cause changes in cell morphology, formation of cell aggregates in overlays, presence of syncytia and destruction of cell culture structure. The damaged cells presented changes in the actin filaments consisting of thickening of the cell cortex and loss of stress fibers. On the other hand, the formation of perinuclear actin rings in the yeasts was observed. Conclusions: An in vitro infection model was established with M. pachydermatis and alterations in cell morphology were observed consisting of changes in the structure of the actin filaments, overgrowth of the cells and the presence of syncytia.展开更多
文摘In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.
文摘In this study, freeze - fractured specimens of Allium cepa root tip meristems were examined under the scanning electron microscope (SEM). This technique permitted the visualization of the outer membrane of the nuclear envelope with nuclear pore complexes and polyribosomes. Some of the cell nuclei prepared with this procedure had fissures of various widths on their nuclear envelopes through which the nuclear lamina-like filaments (LLF) underneath the nucleoplasmic side of the envelopes were clearly visible. The diameters of these filaments varied between 25 and 125 nm. Many of the LLFs showed granular thickenings at places, and were attached to the inner surface of nuclear envelope in some regions. Similar LLFs were also seen at the peripheries of the freeze -fractured faces of nuclei. Meanwhile,the spatial relation between the nuclear matrix filaments (NMF) and other nuclear structures (nucleoli, chromatin and peripheral lamina - like filaments) was revealed in these fractured preparations. In addition, the methods and techniques in studying the nuclear lamina morphology and the roles played by NMFs in activities of various nuclear structures were discussed in brief.
基金supported by the National Natural Science Foundation of China(NSFC)under grant numbers 11373066,11373065 and 11203077the Yunnan Science Foundation of China under number 2013FB086+3 种基金the Talent Project of Western Light of Chinese Academy of Sciencesthe National Basic Research Program of China(973 program)under grant number G2011CB811400the Key Laboratory of Solar Activity of CAS under number KLSA 201303,KLSA 201412 and KLSA201407Youth Innovation Promotion Association of CAS(No.2011056)
文摘Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several paral- lel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10" were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s^-1 to 15.0 km s^-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter- streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.
基金the team at the McIntosh Archive project (a Boston College/NOAA/NCAR collaboration, funded by the NSF), based at NOAA National Centers for Environmental Information, for creating a digital archive of McIntosh Carrington maps and making it available online. R.M
文摘A filament is a cool, dense structure suspended in the solar corona. The eruption of a filament is often associated with a coronal mass ejection(CME), which has an adverse effect on space weather. Hence,research on filaments has attracted much attention in the recent past. The tilt angle of active region(AR)magnetic bipoles is a crucial parameter in the context of the solar dynamo, which governs the conversion efficiency of the toroidal magnetic field to poloidal magnetic field. Filaments always form over polarity inversion lines(PILs), so the study of tilt angles for these filaments can provide valuable information about generation of a magnetic field in the Sun. We investigate the tilt angles of filaments and other properties using McIntosh Archive data. We fit a straight line to each filament to estimate its tilt angle. We examine the variation of mean tilt angle with time. The latitude distribution of positive tilt angle filaments and negative tilt angle filaments reveals that there is a dominance of positive tilt angle filaments in the southern hemisphere and negative tilt angle filaments dominate in the northern hemisphere. We study the variation of the mean tilt angle for low and high latitudes separately. Investigations of temporal variation with filament number indicate that total filament number and low latitude filament number vary cyclically, in phase with the solar cycle. There are fewer filaments at high latitudes and they also show a cyclic pattern in temporal variation. We also study the north-south asymmetry of filaments with different latitude criteria.
基金supported by the National Natural Science Foundation of China (41731067 and 41822404)Shenzhen Technology Project (JCYJ20170307150645407)+6 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETV.201901)the support by China Postdoctoral Science Foundation (2018M641812)support of the US NSF (AGS-1821294)the National Natural Science Foundation of China (11729301)supported by NJIT and US NSF AGS 1821294 grantpartly supported by the Korea Astronomy and Space Science Institute and Seoul National Universitythe strategic priority research program of Chinese Academy of Science (CAS) (Grant No. XDB09000000)
文摘We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromospheric reconnection which ejected cool and dense material with transverse velocity of about 21–28 km s-1 and initial Doppler velocity of 12 km s^-1. This surge is similar to the injection of newly formed filament materials from their footpoints, except that the surge here occurred in a relatively weak magnetic environment of 100 G. Thus, we discuss the possibility of filament material replenishment via the erupting mass in such a weak magnetic field, which is often associated with quiescent filaments. It is found that the local plasma can be heated up to about 1.3 times the original temperature, which results in an acceleration of about –0.017 km s^-2. It can lift the dense material up to 10 Mm and higher with an inclination angle smaller than 50°, namely the typical height of active region filaments, but it can hardly inject the material up to those filaments higher than 25 Mm, like some quiescent filaments. Thus, we think that the injection model does not work well in describing the formation of quiescent filaments.
基金Supported by the National Natural Science Foundation of China
文摘We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes.
文摘Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60621063, 10334110, 10425416, 10634020 and 60478047), the National Key Basic Research Special Foundation of China (Grant No G1999075206), and the National Hi-Tech ICF Programme.
文摘Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. During propagation, the two potential wells of the two filaments can merge into one or repel each other, depending on the initial phase difference between the two filaments. The study provides a simple description of the interacting filaments.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10878002 and 10933003)by the National Basic Research Program of China (973 program, Grant 2011CB811402)
文摘We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relations Observatory. In the event, the two filaments rose high, interacted with each other, and finally were ejected along two different paths. We measure the bulk-flow velocity using spectroscopic data. We find significant outflows at the speed of a few hundreds of km s 1 during the filament eruption, and also some downflows at a few tens of km s-1 at the edge of the eruption region in the late stage of the eruption. The erupting material was composed of plasmas with a wide temperature range of 10-4–106 K. These results shed light on the filament nature and the coronal dynamics.
文摘Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles.
基金supported by the National Natural Science Foundation of China (Grant Nos 10734130,10634020,60621063)National Basic Research Programme of China (Gant No 2007CB815101)
文摘This paper demonstrates the triggering and guiding of the stationary high voltage (HV) discharges at 5-40kV by using plasma filaments generated by femtosecond laser pulses in air. A significant reduction of the breakdown voltage threshold due to the pre-ionization of the air gap by laser filamentation is observed. The discharge experiments are performed by using laser pulses with different energy from 15-60 mJ. The electron density of filaments is detected by sonography method. The influence of the electron density of laser filaments on the triggering and guiding HV discharge is experimentally investigated. The results have shown that the behaviour of plasma filaments can strongly affect the efficiency of triggering and guiding HV discharge.
文摘A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.This is used to represent actin biopolymers,which are constituent elements of the cytoskeleton,a complex network-like structure that plays a fundamental role in shape morphology.An extension of the traditional immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal fluctuations in the fluid at smaller scales.By way of validation,the response of a single,massless,inextensible semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested numerical scheme and the resulting time-averaged contraction of the filament is compared to the theoretical value obtained from the worm-like chain model.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10334110, 10634020, 60621063 and 10734130)National Basic Research Programme of China (Grant No 2007CB815101)the National Hi-Tech ICF Programme
文摘This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crossing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.
基金The National Natural Science Foundation of China supports this work under Grant numbers U2031202,U1531247 and U1731124the 13th Five-year Informatization Plan of Chinese Academy of Sciences under Grant number XXH13505-04the special foundation work of the Ministry of Science and Technology of China under Grant number 2014FY120300。
文摘Solar filaments,hypothermia and dense structures suspended in the solar corona are formed above the magnetic polarity inversion line.Polar crown filaments(PCFs)at high-latitude regions of the Sun are of profound significance to the periodic variation of solar activities.In this paper,we statistically analyze PCFs by using full disk Ha data from 1912 to 2018,which were obtained by Kodaikanal Solar Observatory(KODA,India),National Solar Observatory(NSO,USA),Kanzelhohe Solar Observatory(KSO,Austria),Big Bear Solar Observatory(BBSO,USA),and Huairou Solar Observing Station(HSOS,China).We first manually identify PCFs from every solar image based on the centennial data,and record the latitude and other features corresponding to the PCFs.Then we plot the PCF latitude distribution as a function of time,which clearly shows that PCFs rush to the poles at the ascending phase of each solar cycle.Our results show that the filaments drift toward mid-latitude covering solar cycle 15 to 24 after the PCFs reach the highest latitudes.The poleward migration rates of PCFs are calculated in ten solar cycles,and the range is about 0.12 degree to 0.50 degree per Carrington Rotation(CR).We also investigate the north-south(N-S)asymmetry of migration rates and the normalized N-S asymmetry index.
文摘This paper deals with a discussion of the morphological correlation between the photospheric transversal magnetic field (PTMF) observed at Beijing Observatory and the penumbral filaments (PF) observed at Yunnan Observatory in eight areas of the largest active region AR5395 for the period of 9-15 March 1989. The morphological correlation is rouphly divided in three grades:"consistence", "approach"and "cross", "consistence" means that the difference of the azimuthal angles of PTMF and PF is smaller than 20 ° ; "approach" means that the difference is in the range of 20 ° and 40 ° ; "cross" means that the difference is more than 40 ° . The statistical conclusions are:
基金supported by National Natural Science Foundation of China under Contracts Nos.11275047,11705128,11422546,11575235,11575236 and 11505222Key Research Program of Frontier Sciences,CAS,Grant No.QYZDB-SSWSLH001National Magnetic Confinement Fusion Science Program of China under Contract Nos.2015GB101000 and 2013GB107003
文摘Detailed investigations on the filamentary structures associated with the type-I edge-localized modes(ELMs) should be helpful for protecting the materials of a plasma-facing wall on a future large device.Related experiments have been carefully conducted in the Experimental Advanced Superconducting Tokamak(EAST) using combined Langmuir-magnetic probes.The experimental results indicate that the radially outward velocity of type-I ELMy filaments can be up to 1.7 kms^(-1) in the far scrape-off layer(SOL) region.It is remarkable that the electron temperature of these filaments is detected to be ~50eV,corresponding to a fraction of 1/6 to the temperature near the pedestal top,while the density ~3×10^(19)m^(-3) of these filaments could be approximate to the line-averaged density.In addition,associated magnetic fluctuations have been clearly observed at the same time,which show good agreement with the density perturbations.A localized current on the order of ~100kA could be estimated within the filaments.
基金This work is supported by the National Natural Science Foundation of China (Grant No.50075029)
文摘This paper presents analytic solutions for the flow field of inviscid fluid induced by uniformly and rigidly moving multiple helical vortex filaments in a cylindrical pipe. The relative coordinate system is set on the moving vortex filaments. The analytical solutions of the flow field are obtained on the assumption that the relative velocity field induced is time-independent and helically symmetrical. If the radius of the cylindrical pipe approaches infinity, these solutions are also available for unbounded space. The results show that both the absolute velocity field and pressure field are periodical in time, and may reduce to time-independent when the helical vortex filaments are immobile or slip along the filaments themselves. Furthermore, the solution of velocity field is reduced to Okulov's formula for the case of a single static vortex filament in a cylindrical pipe. The calculated locations of pressure peak and valley on the pipe wall agree with experimental results.
文摘In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise.The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.
文摘We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.
文摘Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Objectives: To establish an in vitro infection model of M. pachydermatis-exposed RK13 cells in order to evaluate cell morphological changes as well as changes in the structure of actin filaments. Methods: Cultures of RK13 cells were infected with M. pachydermatis, alterations caused by the yeast were evaluated by optical and fluorescence microscopy. Results: M. pachydermatis adheres itself to the cell and produces the formation of multiple agglomerates that cause changes in cell morphology, formation of cell aggregates in overlays, presence of syncytia and destruction of cell culture structure. The damaged cells presented changes in the actin filaments consisting of thickening of the cell cortex and loss of stress fibers. On the other hand, the formation of perinuclear actin rings in the yeasts was observed. Conclusions: An in vitro infection model was established with M. pachydermatis and alterations in cell morphology were observed consisting of changes in the structure of the actin filaments, overgrowth of the cells and the presence of syncytia.