Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with fill...Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with filling technology. In addition, high horizontal stress may cause collapse of hanging wall and footwall rocks, hence designing of suitable crown pillars is absolutely necessary for imposing overall safety of the stopes. This paper provides a methodology for the evaluation of the required thickness of crown pillars for safe operation at depth ranging from 600 m to 1000 m. Analyses are conducted with the results of 108 non-linear numerical models considering Drucker-Prager material model in plane strain condition. Material properties of ore body rock and thickness of crown pillars are varied and safety factors of pillars estimated. Then, a generalized statistical relationship between the safety factors of crown pillars with the various input parameters is developed. The developed multivariate regression model is utilized for generating design/stability charts of pillars for different geo-mining conditions.These design charts can be used for the design of crown pillar thickness with the depth of the working,taking into account the changes of the rock mass conditions in underground metal mine.展开更多
The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould...The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.展开更多
The potential of a 3D FDM (Finite Difference Method) computer code was presented, in prediction of flow patterns by modeling the mold filling phenomena through different gating systems. In this code, improvements and ...The potential of a 3D FDM (Finite Difference Method) computer code was presented, in prediction of flow patterns by modeling the mold filling phenomena through different gating systems. In this code, improvements and modifications were made on the original SOLA VOF and Donor Acceptor algorithms. A more accurate solution procedure for handling free surfaces is developed in order to describe the flows through complicated gating designs. A block casting of 200?mm×200?mm×50?mm with two different gating designs was chosen as the verifying problem. Water analog studies are carried out on these two gating designs. The comparison indicates that computer simulation could be a powerful tool in shaping gating systems.展开更多
Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
文摘Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with filling technology. In addition, high horizontal stress may cause collapse of hanging wall and footwall rocks, hence designing of suitable crown pillars is absolutely necessary for imposing overall safety of the stopes. This paper provides a methodology for the evaluation of the required thickness of crown pillars for safe operation at depth ranging from 600 m to 1000 m. Analyses are conducted with the results of 108 non-linear numerical models considering Drucker-Prager material model in plane strain condition. Material properties of ore body rock and thickness of crown pillars are varied and safety factors of pillars estimated. Then, a generalized statistical relationship between the safety factors of crown pillars with the various input parameters is developed. The developed multivariate regression model is utilized for generating design/stability charts of pillars for different geo-mining conditions.These design charts can be used for the design of crown pillar thickness with the depth of the working,taking into account the changes of the rock mass conditions in underground metal mine.
文摘The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.
文摘The potential of a 3D FDM (Finite Difference Method) computer code was presented, in prediction of flow patterns by modeling the mold filling phenomena through different gating systems. In this code, improvements and modifications were made on the original SOLA VOF and Donor Acceptor algorithms. A more accurate solution procedure for handling free surfaces is developed in order to describe the flows through complicated gating designs. A block casting of 200?mm×200?mm×50?mm with two different gating designs was chosen as the verifying problem. Water analog studies are carried out on these two gating designs. The comparison indicates that computer simulation could be a powerful tool in shaping gating systems.
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.