期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers 被引量:2
1
作者 Xin Wang Xiu Shen +2 位作者 Peng Zhang Ai-Jun Zhou Jin-Bao Zhao 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期875-884,共10页
In the polyoxyethylene(PEO)-based solid-state electrolytes,the low ionic conductivity of lithium ions limits its application in solid-state lithium batteries,so optimizing the conduction path of lithium ions is benefi... In the polyoxyethylene(PEO)-based solid-state electrolytes,the low ionic conductivity of lithium ions limits its application in solid-state lithium batteries,so optimizing the conduction path of lithium ions is beneficial to improve the ionic conductivity.In this work,we report the use of hydrothermal carbon nano-sphere(HCS)modified glass fibers(GF)as a functional filler(GF@HCS)to improve the ionic conductivity of PEO composite solidstate electrolytes.The oxygen atoms in the hydroxyl groups on the surface of HCS can be complexed with Li ions as its transport sites,which means that it can promote the longdistance transport of Li ions along the glass fiber surface.With addition of 2 wt%GF@HCS fillers,the degree of crystallinity of PEO composite solid-state electrolyte is the smallest,and the ionic conductivity is significantly increased from 8.9×10^(-5) to 4.4×10^(-4) S·cm^(-1) at 60℃.Moreover,the PEO composite solid-state electrolyte exhibits better lithium-metal interface stability in symmetric lithium batteries and superior rate performance in LiFePO4 solid-state batteries. 展开更多
关键词 filler modification Hydrothermal carbon spheres Transport channel Polyoxyethylene(PEO)composite electrolyte All-solid-state battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部