Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerg...Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).展开更多
Mineral fillers are important for conserving raw fiber materials and reducing production costs in the paper industry.However,the increase in filler content will inevitably result in strength reduction,which limits the...Mineral fillers are important for conserving raw fiber materials and reducing production costs in the paper industry.However,the increase in filler content will inevitably result in strength reduction,which limits the adding amount of filler in paper production.In this study,we designed a cellulose fiber/filler co-refining approach to improve the strength and optical properties of paper;moreover,the synergistic interaction between fibers and precipitated calcium carbonate(PCC)fillers in the co-refining process was investigated.Results of fiber separation and PCC particle size analysis showed that,compared with conventional refining,the content of fines increased,whereas the PCC particle size decreased.More importantly,composites were formed between the PCC and fines,which promoted strength improvement of paper.Physical tests show that the tensile index of paper with 15%PCC content increased by 22%compared with that of the paper filled by conventional method,whereas the brightness and opacity of paper improved by fiber/filler co-refining for a specified filler content.These findings provide a basis for the further development of co-refining filling technology.展开更多
This study evaluated the influence of the Portland cement replacement by 0, 5</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span sty...This study evaluated the influence of the Portland cement replacement by 0, 5</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, 10</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, 15</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> and 20% of Construction and Demolition Waste (CDW) filler </span><span style="font-family:Verdana;">contents in the production of self-compacting concrete (SCC). The SCC mixtures </span><span style="font-family:Verdana;">were evaluated on fresh state by slump flow, J-ring, resistance of segre</span><span style="font-family:Verdana;">gation, specific gravity, and on hardened state by compressive and splitting tensile </span><span style="font-family:Verdana;">strength, specific gravity, air voids and absorption rate. The results indicated that all SCC produced with CDW filler met the limits established at any level of substitution without changes of the w/c ratio or superplasticizer content. It was possible to verify that the presence of CDW filler, in substitution of cement, by volume, improves the resistance to segregation and up to 5% of CDW filler decreases the loss of fluidity with time as compared to reference. It was found that all SCC mixtures, at 28 days, had the average compressive strength above 50 MPa, without showing significant loss with up to 20% of CDW filler. For splitting tensile strength, SCC recycled mixtures reached up to 92.5% of the SCC used as reference. Absorption rate and air voids index of SCC recycled mixtures had a maximum increase of 1.60%Compared to the reference one. So, it is possible to conclude that the use of the CDW filler up to 20% in substitution of cement, by volume, is feasible for SCC production.展开更多
The rheological properties of the bituminous components (bitumen and bituminous mastic) within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low ...The rheological properties of the bituminous components (bitumen and bituminous mastic) within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking). Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggre- gates. The purpose of this study is to investigate the effects of mineral fillers on the theological behaviour of several polymer-modified bitumens (PMBs) through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric) were used to produce PMBs, and two fillers with different minerals (limestone and basalt) were selected to obtain mastics. The dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to characterize the theological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR) tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combi- nation of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical-chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.展开更多
矿物阻燃填料是传统防火涂料的重要组成部分。基于中国知网数据库、Web of Science数据库和国家知识产权局数据库,检索了1990年至2022年有机防火涂料中矿物阻燃填料研究的文献,介绍了矿物阻燃填料的研究应用情况。文献检索及专利分析表...矿物阻燃填料是传统防火涂料的重要组成部分。基于中国知网数据库、Web of Science数据库和国家知识产权局数据库,检索了1990年至2022年有机防火涂料中矿物阻燃填料研究的文献,介绍了矿物阻燃填料的研究应用情况。文献检索及专利分析表明:进入21世纪以后,国内外对矿物阻燃填料在有机防火涂料中的应用研究关注度呈增长趋势,研究热点主要集中在钢结构防火涂料、阻燃机理、表面改性、热稳定性等方面,矿物阻燃填料研究种类从以氢氧化铝、氢氧化镁为主逐渐转为以氢氧化铝、氢氧化镁、可膨胀石墨和黏土矿物为主,种类多样化、成分多样化和结构复杂化是近年来有机防火涂料中矿物阻燃填料的研究趋势,矿物阻燃填料的纳米化、协同阻燃以及表面改性等技术将不断得到发展。展开更多
Granite is well known as an acid aggregate. An active mineral filler produced in the laboratory is first used as an anti-stripping filler in the granite asphalt concrete. Four aggregate gradations were chosen in this ...Granite is well known as an acid aggregate. An active mineral filler produced in the laboratory is first used as an anti-stripping filler in the granite asphalt concrete. Four aggregate gradations were chosen in this study,and the effects of the active mineral filler and aggregates on the rutting resistance performance and fatigue properties of granite asphalt concrete were investigated by means of rutting test and four-point bending fatigue test. The results indicate that the dynamic stability of granite asphalt concrete increase significantly with the addition of active mineral filler and the fatigue properties can also be improved especially at lower strain level. Meanwhile,the results demonstrate that granite asphalt concrete has better rutting resistance performance and fatigue properties than limestone asphalt concrete.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50408016) the "863" High-Tech Research and Development Program of China (No. 2005AA332010)
文摘Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).
基金This work was financially supported by Innovation Capability Support Program of Shaanxi(2020KJXX082)the Foundation(202005)of Tianjin Key Laboratory of Pulp&Paper(Tianjin University of Science&Technology).
文摘Mineral fillers are important for conserving raw fiber materials and reducing production costs in the paper industry.However,the increase in filler content will inevitably result in strength reduction,which limits the adding amount of filler in paper production.In this study,we designed a cellulose fiber/filler co-refining approach to improve the strength and optical properties of paper;moreover,the synergistic interaction between fibers and precipitated calcium carbonate(PCC)fillers in the co-refining process was investigated.Results of fiber separation and PCC particle size analysis showed that,compared with conventional refining,the content of fines increased,whereas the PCC particle size decreased.More importantly,composites were formed between the PCC and fines,which promoted strength improvement of paper.Physical tests show that the tensile index of paper with 15%PCC content increased by 22%compared with that of the paper filled by conventional method,whereas the brightness and opacity of paper improved by fiber/filler co-refining for a specified filler content.These findings provide a basis for the further development of co-refining filling technology.
文摘This study evaluated the influence of the Portland cement replacement by 0, 5</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, 10</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, 15</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">%</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> and 20% of Construction and Demolition Waste (CDW) filler </span><span style="font-family:Verdana;">contents in the production of self-compacting concrete (SCC). The SCC mixtures </span><span style="font-family:Verdana;">were evaluated on fresh state by slump flow, J-ring, resistance of segre</span><span style="font-family:Verdana;">gation, specific gravity, and on hardened state by compressive and splitting tensile </span><span style="font-family:Verdana;">strength, specific gravity, air voids and absorption rate. The results indicated that all SCC produced with CDW filler met the limits established at any level of substitution without changes of the w/c ratio or superplasticizer content. It was possible to verify that the presence of CDW filler, in substitution of cement, by volume, improves the resistance to segregation and up to 5% of CDW filler decreases the loss of fluidity with time as compared to reference. It was found that all SCC mixtures, at 28 days, had the average compressive strength above 50 MPa, without showing significant loss with up to 20% of CDW filler. For splitting tensile strength, SCC recycled mixtures reached up to 92.5% of the SCC used as reference. Absorption rate and air voids index of SCC recycled mixtures had a maximum increase of 1.60%Compared to the reference one. So, it is possible to conclude that the use of the CDW filler up to 20% in substitution of cement, by volume, is feasible for SCC production.
基金supported by the Ministry of EducationUniversities and Research project"Damage and healing of innovative nano-structured and polymer-modified bituminous materials"(Grant RBFR10JOWO)under the"FIRB-Futuro in Ricerca 2010"funding program
文摘The rheological properties of the bituminous components (bitumen and bituminous mastic) within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking). Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggre- gates. The purpose of this study is to investigate the effects of mineral fillers on the theological behaviour of several polymer-modified bitumens (PMBs) through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric) were used to produce PMBs, and two fillers with different minerals (limestone and basalt) were selected to obtain mastics. The dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to characterize the theological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR) tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combi- nation of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical-chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.
文摘矿物阻燃填料是传统防火涂料的重要组成部分。基于中国知网数据库、Web of Science数据库和国家知识产权局数据库,检索了1990年至2022年有机防火涂料中矿物阻燃填料研究的文献,介绍了矿物阻燃填料的研究应用情况。文献检索及专利分析表明:进入21世纪以后,国内外对矿物阻燃填料在有机防火涂料中的应用研究关注度呈增长趋势,研究热点主要集中在钢结构防火涂料、阻燃机理、表面改性、热稳定性等方面,矿物阻燃填料研究种类从以氢氧化铝、氢氧化镁为主逐渐转为以氢氧化铝、氢氧化镁、可膨胀石墨和黏土矿物为主,种类多样化、成分多样化和结构复杂化是近年来有机防火涂料中矿物阻燃填料的研究趋势,矿物阻燃填料的纳米化、协同阻燃以及表面改性等技术将不断得到发展。
基金Department of Transportation in Hubei Province,China and Headguarters of Ma-Wu Expressway in Hubei Province for its financial support of this work.
文摘Granite is well known as an acid aggregate. An active mineral filler produced in the laboratory is first used as an anti-stripping filler in the granite asphalt concrete. Four aggregate gradations were chosen in this study,and the effects of the active mineral filler and aggregates on the rutting resistance performance and fatigue properties of granite asphalt concrete were investigated by means of rutting test and four-point bending fatigue test. The results indicate that the dynamic stability of granite asphalt concrete increase significantly with the addition of active mineral filler and the fatigue properties can also be improved especially at lower strain level. Meanwhile,the results demonstrate that granite asphalt concrete has better rutting resistance performance and fatigue properties than limestone asphalt concrete.