Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grab...Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grabbing Crane. Article includes checking sun gear wear stresses and bending stresses using IS 4460 equations. Also calculate various forces acting on gear tooth. In this study, perform the calculation for sun gear tooth to calculate bending, shear, wear & deflection using theoretical method. 3D model is created of circular root fillet & trochoidal root fillet of gear tooth for simulation using ProE Wildfire 3. In Pro-E, the geometry is saved as a file and then it is transferred from Pro-E to ANSYS 10 in IGES format. The results of the 3 D analyses from ANSYS are compared with the theoretical values. Comparison of ANSYS results in circular root fillet & trochoidal root fillet also carry out.展开更多
This paper presents a mechanical calculation and numerical simulation of the fillet weld of sleeve repair.The mechanical analysis based on the yield criteria is performed to obtain the minimum value of the fillet weld...This paper presents a mechanical calculation and numerical simulation of the fillet weld of sleeve repair.The mechanical analysis based on the yield criteria is performed to obtain the minimum value of the fillet weld leg height to ensure the strength and loadbearing capacity of the weld. Within the framework of numerical simulation,the parameters of double ellipsoid heat source are determined by fitting method and the simulated molten pool morphology agrees well with the practical weld. Finite element models with various weld leg height are performed to predict the distribution and magnitude of the deformation and stress. The simulation takes into account thermal,metallurgical and mechanical factors,and the maximum value of the fillet weld leg height is obtained based on the magnitude of the deformation and stress.The mechanical calculation and numerical simulation results show that 1.2-2 times wall thickness is an optimal range of fillet weld leg height. And reasonable parameters of sleeve repair for in-service welding are provided for engineering field,which can improve the service life of the weld and production efficiency.展开更多
The effect of fillet formed from structural adhesive differing in elastic modulus on the stress distribution along the length of bi-adhesive bonded single lap aluminum joints was studied under the condition of one adh...The effect of fillet formed from structural adhesive differing in elastic modulus on the stress distribution along the length of bi-adhesive bonded single lap aluminum joints was studied under the condition of one adhesive or bi-adhesive arranged along the bondline by an elastic finite element model. The results obtained from the numerical simulation show that the fillet can reduce the peak value of stress obviously. It is not recommended to arrange a higher modulus adhesive with a lower one along the bondline for the peak stress may be maintained nearly the same. The lower the fillet formed by the elastic modulus adhesive is, the lower the stress concentration towards the end of a bonded lap joint is. It may be benefit to raise the shear strength of aluminum single lap joint.展开更多
文摘Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grabbing Crane. Article includes checking sun gear wear stresses and bending stresses using IS 4460 equations. Also calculate various forces acting on gear tooth. In this study, perform the calculation for sun gear tooth to calculate bending, shear, wear & deflection using theoretical method. 3D model is created of circular root fillet & trochoidal root fillet of gear tooth for simulation using ProE Wildfire 3. In Pro-E, the geometry is saved as a file and then it is transferred from Pro-E to ANSYS 10 in IGES format. The results of the 3 D analyses from ANSYS are compared with the theoretical values. Comparison of ANSYS results in circular root fillet & trochoidal root fillet also carry out.
基金supported by the Shandong Key Research and Development Plan,Department of Science&Technology of Shandong Province(No.2016ZDJS05B03)China University of Petroleum(East China)Graduate Project Innovation Project(No.YCX2017052)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Independent Innovation Research Project of China University of Petroleum(East China)(No.17CX06005)
文摘This paper presents a mechanical calculation and numerical simulation of the fillet weld of sleeve repair.The mechanical analysis based on the yield criteria is performed to obtain the minimum value of the fillet weld leg height to ensure the strength and loadbearing capacity of the weld. Within the framework of numerical simulation,the parameters of double ellipsoid heat source are determined by fitting method and the simulated molten pool morphology agrees well with the practical weld. Finite element models with various weld leg height are performed to predict the distribution and magnitude of the deformation and stress. The simulation takes into account thermal,metallurgical and mechanical factors,and the maximum value of the fillet weld leg height is obtained based on the magnitude of the deformation and stress.The mechanical calculation and numerical simulation results show that 1.2-2 times wall thickness is an optimal range of fillet weld leg height. And reasonable parameters of sleeve repair for in-service welding are provided for engineering field,which can improve the service life of the weld and production efficiency.
文摘The effect of fillet formed from structural adhesive differing in elastic modulus on the stress distribution along the length of bi-adhesive bonded single lap aluminum joints was studied under the condition of one adhesive or bi-adhesive arranged along the bondline by an elastic finite element model. The results obtained from the numerical simulation show that the fillet can reduce the peak value of stress obviously. It is not recommended to arrange a higher modulus adhesive with a lower one along the bondline for the peak stress may be maintained nearly the same. The lower the fillet formed by the elastic modulus adhesive is, the lower the stress concentration towards the end of a bonded lap joint is. It may be benefit to raise the shear strength of aluminum single lap joint.