An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic rela...An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance o...A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance of composite construction concrete filled glass fiber reinforced polymer (GFRP) tubular (CFFT) columns.The results indicated that concrete-filled GFRP tubular columns exhibit considerable influence over the seismic performance of columns by providing hoop confinement to the core concrete.The concrete filled GFRP tubular columns exhibit significant improvement over traditional RC columns in both ultimate strength and ductility.Different column-footing connection modes do not affect the strength and ductility of concrete filled GFRP tubular columns.The strength of concrete filled GFRP tubular columns under high axial compression load conditions are slightly increased,however,ductility declined.展开更多
文摘An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.
文摘A reinforced concrete (RC) column and four concrete filled GFRP tubular columns,which are subjected to combined axial compression and lateral cycle loading,were tested in order to investigate the seismic performance of composite construction concrete filled glass fiber reinforced polymer (GFRP) tubular (CFFT) columns.The results indicated that concrete-filled GFRP tubular columns exhibit considerable influence over the seismic performance of columns by providing hoop confinement to the core concrete.The concrete filled GFRP tubular columns exhibit significant improvement over traditional RC columns in both ultimate strength and ductility.Different column-footing connection modes do not affect the strength and ductility of concrete filled GFRP tubular columns.The strength of concrete filled GFRP tubular columns under high axial compression load conditions are slightly increased,however,ductility declined.