During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly d...In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.展开更多
In some scattered point cloud triangular mesh restoration algorithm, small triangular mesh holes problem will often affect the quality of the model. For small holes at the details, this paper propose a method for iden...In some scattered point cloud triangular mesh restoration algorithm, small triangular mesh holes problem will often affect the quality of the model. For small holes at the details, this paper propose a method for identifying and extracting hollow edge,and use a triangle growth way based on boundary edge angle to fill the empty void. First, according the relationship of the point, side and face of the triangle mesh model to identify the hole, then extracting the holes boundary edge and classifying it. Finally, using a triangle growth method based on holes boundary edge angle to fill each small holes separated from the boundary. Compared with other algorithm of filling holes, this method is high efficiency for small holes of smooth surface,and itimprovesthe quality of the triangular mesh model.展开更多
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes...Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.展开更多
When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent r...When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.展开更多
The transmission and negative refractive index(NRI) of metal–dielectric–metal sandwiched metamaterials perforated with di?erent filling media of holes are numerically studied. Results indicate that filling the appro...The transmission and negative refractive index(NRI) of metal–dielectric–metal sandwiched metamaterials perforated with di?erent filling media of holes are numerically studied. Results indicate that filling the appropriate medium in rectangular holes can enhance transmission. The NRI and frequency bandwidth of NRI decrease with increased relative permittivity of the filling medium. A stronger magnetic response that contributes to the dual NRI metamaterials is found.展开更多
View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compr...View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compression) or view rendering(for multiview-display).The quality of view synthesis depends on how one fills the occlusion area as well as how the pixels are created.Consequently,luminance adjustment and hole filling are two key issues in view synthesis.In this paper,two views are used to produce an arbitrary virtual synthesized view.One view is merged into another view using a local luminance adjustment method,based on local neighborhood region for the calculation of adjustment coefficient.Moreover,a maximum neighborhood spreading strength hole filling method is presented to deal with the micro texture structure when the hole is being filled.For each pixel at the hole boundary,its neighborhood pixels with the maximum spreading strength direction are selected as candidates;and among them,the pixel with the maximum spreading strength is used to fill the hole from boundary to center.If there still exist disocclusion pixels after once scan,the filling process is repeated until all hole pixels are filled.Simulation results show that the proposed method is efficient,robust and achieves high performance in subjection and objection.展开更多
In present paper, the contour deletion method is developed both to blend surfaces and to fill N-sided holes, which is used for subdividing the NURBS surface. First, according to the non-uniform Catmull-Clark subdivisi...In present paper, the contour deletion method is developed both to blend surfaces and to fill N-sided holes, which is used for subdividing the NURBS surface. First, according to the non-uniform Catmull-Clark subdivision principle, surfaces are blended. The non-uniform Catmull-Clark subdivision method is constructed, which build the surface through interpolating comer vertices and boundary curves. Then the contour deletion method is adapted to remove the controlling mesh boundary contour in the process of segmentation iteration. Last, N sided-hole is filled to generate a integral smooth continuous surface. This method not only guarantee that the blending surface and base surface patches have C2 continuity at the boundary, but also greatly improve the smoothness of the N-side hole filling surface. The results show that, this method simplifies the specific computer-implemented process, broads the scope of application of subdivision surfaces, and solves the incompatible problem between the subdivision surface and classical spline. The resulting surface has both advantages of the subdivision surface and classical spline, and also has better filling effect.展开更多
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
文摘In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.
文摘In some scattered point cloud triangular mesh restoration algorithm, small triangular mesh holes problem will often affect the quality of the model. For small holes at the details, this paper propose a method for identifying and extracting hollow edge,and use a triangle growth way based on boundary edge angle to fill the empty void. First, according the relationship of the point, side and face of the triangle mesh model to identify the hole, then extracting the holes boundary edge and classifying it. Finally, using a triangle growth method based on holes boundary edge angle to fill each small holes separated from the boundary. Compared with other algorithm of filling holes, this method is high efficiency for small holes of smooth surface,and itimprovesthe quality of the triangular mesh model.
文摘Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.
基金supported by the National Natural Science Foundation of China(No.61405034)the Special Project on Basic Research of Frontier Leading Technology of Jiangsu Province,China(No.BK20192004C)+1 种基金the Shenzhen Science and Technology Innovation Committee(No.JCYJ20180306174455080)the Natural Science Foundation of Jiangsu Province,China(No.BK20181269)。
文摘When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.
基金supported by the National Natural Science Foundation of China(No.60778041)the Graduate Education Innovation Project of Jiangsu Province(No.CXLX13_39)
文摘The transmission and negative refractive index(NRI) of metal–dielectric–metal sandwiched metamaterials perforated with di?erent filling media of holes are numerically studied. Results indicate that filling the appropriate medium in rectangular holes can enhance transmission. The NRI and frequency bandwidth of NRI decrease with increased relative permittivity of the filling medium. A stronger magnetic response that contributes to the dual NRI metamaterials is found.
基金supported by the National Natural Science Foundation of China(61075013)
文摘View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compression) or view rendering(for multiview-display).The quality of view synthesis depends on how one fills the occlusion area as well as how the pixels are created.Consequently,luminance adjustment and hole filling are two key issues in view synthesis.In this paper,two views are used to produce an arbitrary virtual synthesized view.One view is merged into another view using a local luminance adjustment method,based on local neighborhood region for the calculation of adjustment coefficient.Moreover,a maximum neighborhood spreading strength hole filling method is presented to deal with the micro texture structure when the hole is being filled.For each pixel at the hole boundary,its neighborhood pixels with the maximum spreading strength direction are selected as candidates;and among them,the pixel with the maximum spreading strength is used to fill the hole from boundary to center.If there still exist disocclusion pixels after once scan,the filling process is repeated until all hole pixels are filled.Simulation results show that the proposed method is efficient,robust and achieves high performance in subjection and objection.
基金Supported by NUAA Fundamental Research Funds(NZ2013201)
文摘In present paper, the contour deletion method is developed both to blend surfaces and to fill N-sided holes, which is used for subdividing the NURBS surface. First, according to the non-uniform Catmull-Clark subdivision principle, surfaces are blended. The non-uniform Catmull-Clark subdivision method is constructed, which build the surface through interpolating comer vertices and boundary curves. Then the contour deletion method is adapted to remove the controlling mesh boundary contour in the process of segmentation iteration. Last, N sided-hole is filled to generate a integral smooth continuous surface. This method not only guarantee that the blending surface and base surface patches have C2 continuity at the boundary, but also greatly improve the smoothness of the N-side hole filling surface. The results show that, this method simplifies the specific computer-implemented process, broads the scope of application of subdivision surfaces, and solves the incompatible problem between the subdivision surface and classical spline. The resulting surface has both advantages of the subdivision surface and classical spline, and also has better filling effect.