Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of th...Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.展开更多
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) fi...Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.展开更多
Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and...Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage.展开更多
介绍了一种单端口,端口阻抗为50Ω的S波段宽带薄膜体声波谐振器(FBAR)滤波器,该滤波器采用网格型结构的FBAR滤波器芯片级联巴伦芯片实现。对宽带FBAR滤波器芯片的设计过程、工艺实现过程进行了说明。采用0.35μm Ga As工艺实现了3~8 ...介绍了一种单端口,端口阻抗为50Ω的S波段宽带薄膜体声波谐振器(FBAR)滤波器,该滤波器采用网格型结构的FBAR滤波器芯片级联巴伦芯片实现。对宽带FBAR滤波器芯片的设计过程、工艺实现过程进行了说明。采用0.35μm Ga As工艺实现了3~8 GHz频率范围的巴伦芯片,在FBAR滤波器芯片的中心频率处,幅度不平衡度为0.53 d B,相位不平衡度为0.55°。制备的FBAR滤波器通带频率范围为3 100~3 400 MHz,1 d B带宽约为369 MHz,在2 660 MHz和3 840 MHz处带外抑制分别为45.6 d Bc和41.3 d Bc,尺寸仅为12 mm×7 mm×2.9 mm。将实测结果与仿真结果进行了对比,两者一致性很好。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61275081)
文摘Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60871049 and 50972024)
文摘Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.
基金supported financially by the National Natural Science Foundation of China (Grant Nos.22078051 and U1801258)the Fundamental Research Funds for the Central Universities (Grant No.DUT22LAB610).
文摘Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage.
文摘介绍了一种单端口,端口阻抗为50Ω的S波段宽带薄膜体声波谐振器(FBAR)滤波器,该滤波器采用网格型结构的FBAR滤波器芯片级联巴伦芯片实现。对宽带FBAR滤波器芯片的设计过程、工艺实现过程进行了说明。采用0.35μm Ga As工艺实现了3~8 GHz频率范围的巴伦芯片,在FBAR滤波器芯片的中心频率处,幅度不平衡度为0.53 d B,相位不平衡度为0.55°。制备的FBAR滤波器通带频率范围为3 100~3 400 MHz,1 d B带宽约为369 MHz,在2 660 MHz和3 840 MHz处带外抑制分别为45.6 d Bc和41.3 d Bc,尺寸仅为12 mm×7 mm×2.9 mm。将实测结果与仿真结果进行了对比,两者一致性很好。