Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and...Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and UV-Vis absorption spectra. The photocatalytic activities of TiO2 films were investigated by photocatalytic degradation reactions of gaseous acetaldehyde, an indoor pollutant, under ultraviolet light irradiation. It was found that Ni^2+ doping into TiO2 films due to the foam nickel substrates resulted in the extension of absorption edges of TiO2 films from UV region to visible light region. The pre-heating for foam nickel substrates resulted in the formation of NiO layer, which prevented effectively the injection of photogenerated electrons from TiO2 films to metal nickel. The TiO2 films displayed high photocatalytic activity for the degradation of acetaldehyde, and were enhanced by calcining the substrates and coating TiO2 films repeatedly. The high activity was mainly attributed to the improvement of the characteristics of substrate surface and the increase of active sites on photocatalyst.展开更多
Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight la...Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.展开更多
基金Project supported by the Special Foundation of Nanometer Technology from Shanghai Municipal Science and Technology Commis-sion(STCSM) (No. 0552nm002).
文摘Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and UV-Vis absorption spectra. The photocatalytic activities of TiO2 films were investigated by photocatalytic degradation reactions of gaseous acetaldehyde, an indoor pollutant, under ultraviolet light irradiation. It was found that Ni^2+ doping into TiO2 films due to the foam nickel substrates resulted in the extension of absorption edges of TiO2 films from UV region to visible light region. The pre-heating for foam nickel substrates resulted in the formation of NiO layer, which prevented effectively the injection of photogenerated electrons from TiO2 films to metal nickel. The TiO2 films displayed high photocatalytic activity for the degradation of acetaldehyde, and were enhanced by calcining the substrates and coating TiO2 films repeatedly. The high activity was mainly attributed to the improvement of the characteristics of substrate surface and the increase of active sites on photocatalyst.
基金the financial support of NSERC(Discovery Grant RGPIN-2015-03985).
文摘Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.