b Département de Physique, Ecole Polythechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland c Department of Chemistry, Tsinghua University, Beijing 100084, China An excellent hole-transpor...b Département de Physique, Ecole Polythechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland c Department of Chemistry, Tsinghua University, Beijing 100084, China An excellent hole-transport material, 1,3-diphenyl-5-(9-phenanthryl)-2-pyrazoline (DPPhP) for OLEDs was studied. This compound not only offers high glass transition temperature (T g=96 ℃), good film forming ability, and high HOMO energy level, but also displays excellent hole-transport property. The electroluminescent device with a simple structure of ITO/DPPhP (60 nm)/AlQ (60 nm)/LiF (0.8 nm)/Al shows an external quantum efficiency as high as 1.6%.展开更多
文摘b Département de Physique, Ecole Polythechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland c Department of Chemistry, Tsinghua University, Beijing 100084, China An excellent hole-transport material, 1,3-diphenyl-5-(9-phenanthryl)-2-pyrazoline (DPPhP) for OLEDs was studied. This compound not only offers high glass transition temperature (T g=96 ℃), good film forming ability, and high HOMO energy level, but also displays excellent hole-transport property. The electroluminescent device with a simple structure of ITO/DPPhP (60 nm)/AlQ (60 nm)/LiF (0.8 nm)/Al shows an external quantum efficiency as high as 1.6%.