Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
Thin film coating is a process of making liquid film cover and deposit base body surface by the way of dipping, spraying, sliding or spin coating, which is a kind of modern surface engineering. It plays an important r...Thin film coating is a process of making liquid film cover and deposit base body surface by the way of dipping, spraying, sliding or spin coating, which is a kind of modern surface engineering. It plays an important role in the actual processing, such as improving the surface properties, fine processing, and new surface properties. Analysis of the influence of substrating morphology and fluid flow properties itself on coating fluid motion has an important significance to optimize the thin film coating and improve the quality of the final film. The influence from uneven substrate surface’s geometry configuration on internal motion of the flow field in slip-coating is analyzed by using the FLUENT software as a calculation platform. A two-dimension model of slip coating under isosceles triangle and isosceles trapezoid substrate was established, and thin film coating fluid motions under different configuration parameters were simulated. It is pointed out that the key factor determining the turbulence generation and evolution is the parameter of substrating surface nature. The effects of the change of Reynolds number on turbulent appearance and action area are studied. The velocity contours of fluid field on different substrate surfaces are shown, and the impact of substrate geometry on the backwater region is analyzed.展开更多
Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its p...Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.展开更多
Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our wo...Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our work focuses on this type of CIGS-based solar cells where CdS is replaced by a ZnS buffer layer. In this contribution, AFORS-HET software is used to simulate n-ZnO: Al/i-ZnO/n-ZnS/p-CIGS/Mo polycrystalline thin-film solar cell where the key parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and doping concentrations of absorber and buffer layers have been investigated to optimize the conversion efficiency. We find a maximum conversion efficiency of 26% with a short-circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5%.展开更多
A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions des...A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions describing the dehumidifying process are set up. Calcium chloride is applied as the desiccant. The dehumidifying process between falling liquid desiccant film and process air is analyzed and calculated by the control volume approach. Velocity field, temperature distribution and outlet parameters for both the process air and desiccant solution are obtained. The effects of inlet conditions and vertical wall height on the dehumidification process are also predicted. The results show that the humidity ratio, temperature and mass fraction of salt decrease rapidly at the inlet region but slowly at the outlet region along the vertical wall height. The dehumidification processes can be enhanced by increasing the vertical wall height, desiccant solution flow rates or inlet salt concentration in the desiccant solution, respectively. Similarly, the dehumidification process can be improved by decreasing the inlet humidity ratio or flow rates of the process air. The obtained results can improve the performance of the dehumidifier and provide the theoretical basis for the optimization design, and the ooeration and modulation of the solar liquid desiccant air-conditioning systems.展开更多
To develop an appropriate falling film evaporation device for organic fluid cogeneration, a numerical study on the gas–liquid two-phase counter-current flow characteristics of R113 inside a vertical tube under differ...To develop an appropriate falling film evaporation device for organic fluid cogeneration, a numerical study on the gas–liquid two-phase counter-current flow characteristics of R113 inside a vertical tube under different structural conditions was conducted using the Fluent software. The effects of the tube length, tube diameter, and annular gap on the falling film flow characteristics were determined, respectively. The results indicated that under a certain spray density, the falling film thickness in the region of the steady section was almost constant with different structural parameters for the tube diameter, tube length, and annular gap. In addition, a smaller tube diameter resulted in a steadier film flow. When the tube diameter decreased to a specific value, the film thickness showed a uniform distribution along the wall surface. This indicated that a best falling tube diameter exists. Meanwhile, the film fluctuation was enhanced with an increase in the tube length. When the tube length was greater than 1.2 m, the falling film splashed and could not completely wet the wall surface. The film fluctuation was enhanced by decreasing the annular gap, and the film could not be formed when the annular gap was smaller than 1.2 mm.展开更多
Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characterist...Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.展开更多
The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kett...The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kettle to realize process intensification.In view of this,the fluid volume function method of computational fluid dynamics numerical simulation was used to investigate the film formation and surface renewal characteristics of horizontal polycondensation kettle under different operating conditions,including viscosity,rotating speed and liquid height.The results show that the viscosity and rotating speed were positively correlated with the film area and surface renewal in the pre-polycondensation stage.However,increasing the viscosity by several orders of magnitude in the final polycondensation kettle,the larger the film area and film thickness,but the overall surface renewal of the disk decreased.Therefore,a hexagonal hole disk is designed.By comparison,it is found that the film is more uniform,the surface update frequency is higher,and the power consumption can be reduced by more than 20%.展开更多
Many rubber friction theories or some method combined theories and field-experiments are employed to evaluate the pavement skid-resistance deterioration due to the evolution of surface textures.However,these methods a...Many rubber friction theories or some method combined theories and field-experiments are employed to evaluate the pavement skid-resistance deterioration due to the evolution of surface textures.However,these methods are difficult to be implemented in the analysis of situations with multi-factor coupling and some extreme conditions.This study developed a framework to evaluate the skid-resistance deterioration of asphalt pavements.In this framework,the portable laser scanning was used to create the digital worn pavement model,and a hydroplaning finite element(FE)model for these digital worn pavements was constructed to evaluate coupling effects of the texture evolution and factors of slip ratio,slip angle,velocity and water film on braking-cornering characteristics of tire.In this study,the deterioration of skid-resistance of five typical asphalt pavements due the surface texture wear was systematically investigated by this framework.Compared with previous works,this study established the rubber friction models for each digital worn pavement considering the energy hysteresis of rubber and the power spectrum density of surface texture.And the rubber friction model was used to define the interaction behaviors between the tire and corresponding wore pavements in the FE hydroplaning model,rather than using an empirical friction model or a fixed friction coefficient.展开更多
A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a...A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.展开更多
A new type of film cooling hole with micro groove structure is presented in this paper.Based on the finite volume method and the Realizable k-εmodel,the film cooling process of the hole in a flat plate structure is s...A new type of film cooling hole with micro groove structure is presented in this paper.Based on the finite volume method and the Realizable k-εmodel,the film cooling process of the hole in a flat plate structure is simulated.The surface temperature distribution and film cooling effect of different film cooling holes were analyzed.The effects of micro-groove structure on wall attachment and cooling efficiency of jet were discussed.The results show that under the same conditions,the transverse coverage width and overall protective area of the new micro-groove holes are larger than those of the ordinary cylindrical holes and special-shaped holes.Compared with ordinary holes,the new micro-groove holes can better form the film covering on the surface and enhance the overall film cooling efficiency of the wall.For example,when the blowing ratio M=1.5,the effective coverage ratio of micro-groove holes is 1.5 times the dustpan holes and is 8 times the traditional cylindrical holes.It provides reference data and experience rules for the optimization and selection of advanced cooling structure of high performance aero-gas engine hot-end components.展开更多
The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The...The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The results show that vapor film suppresses the drop breakup and hence the critical Weber number increases with the increasing thickness of vapor film. The breakup process can be divided into two stages. The drop deformation and breakup mainly occur in the later stage. Three breakup mechanisms are unveiled, which are almost the same as that of drop breakup without vapor film except for the stronger Rayleigh-Taylor instability for drop with vapor film. Our simulation results are comparable with the previous experiments.展开更多
In order to achieve the construction standard of high mechanized performance of the seedbed with whole plastic-film mulching on double ridges,in this study,the forms of suppression failure were analyzed,and the key fa...In order to achieve the construction standard of high mechanized performance of the seedbed with whole plastic-film mulching on double ridges,in this study,the forms of suppression failure were analyzed,and the key factors influencing the suppression performance were determined based on the structure of the seedbed suppression device and its working principles.The discrete element method was adopted for numerical simulation on the suppression process of the seedbed with whole plastic film mulching on double ridges;the parameters during the interaction between the suppression device and seedbed soil were extracted and analyzed,such as contact area,sinkage and horizontal traction resistance trend of press wheels on big ridges and furrows of small ridge.Taking the suppression load on big ridges,suppression load on furrows of small ridge,and advancing velocity of the combined operation machine as the independent variables,qualified rate of suppression as the response value,a mathematical model between the test factors and qualified rate of suppression was established,to explore the influence sequence of the factors on suppression qualified rate.The optimal working parameters of the suppression device were finally obtained:the suppression load on big ridges was 40 N,suppression load on furrows of small ridge was 69.8 N and the machine advancing velocity was 0.98 m/s,and the achieved mean value of suppression qualified rate was 92.6%.Field verification test showed that the mean value of suppression qualified rate was 90.3%,a mere difference of 2.3%compared with the simulation result.The actual operation of the sample machine was basically consistent with the simulation process and could reveal the mechanized suppression operation mechanism of the seedbed with whole plastic film mulching on double ridges,indicating that the established DEM model and its parameter setting were relatively accurate and reasonable.展开更多
Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been...Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location.展开更多
Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions...Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions of the three-dimensional velocities were compared with the measured results by Laser-Doppler Velocimetry (LDV). Results reveal the secondary flow near the blade surface in the wake region behind the jet hole. Compared with the stationary cascade, there are the centrifugal force and Coriolis force existing in the flow field of the turbine rotor, and these forces make the three-dimensional flow field change in the turbine rotor, especially for the radial velocity. The effect of rotation on the flow field and the film cooling effectiveness on the pressure side is more apparent than that on the suction side as is shown in the computational and measured results, and the low film cooling effectiveness appears on the pressure surface of the turbine rotor blade compared with that of the stationary cascade.展开更多
The flow behavior of gravity-driven falling film of non-conductive high viscosity polymer fluids on an industrial-scale vertical wavy wall was investigated in terms of film thickness and residence time distribution by...The flow behavior of gravity-driven falling film of non-conductive high viscosity polymer fluids on an industrial-scale vertical wavy wall was investigated in terms of film thickness and residence time distribution by numerical simulation and experiment.Falling film flow of high viscosity fluids was found to be steady on a vertical wavy wall in the presence of the large film thickness.The comparison between numerical simulation and experiment for the film thickness both in crest and trough of wavy wall showed good agreement.The simulation results of average residence time of falling film flow with different viscous fluids were also consistent with the experimental results.This work provides the initial insights of how to evaluate and optimize the falling film flow system of polymer fluid.展开更多
Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphas...Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)展开更多
A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workp...A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications.展开更多
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
文摘Thin film coating is a process of making liquid film cover and deposit base body surface by the way of dipping, spraying, sliding or spin coating, which is a kind of modern surface engineering. It plays an important role in the actual processing, such as improving the surface properties, fine processing, and new surface properties. Analysis of the influence of substrating morphology and fluid flow properties itself on coating fluid motion has an important significance to optimize the thin film coating and improve the quality of the final film. The influence from uneven substrate surface’s geometry configuration on internal motion of the flow field in slip-coating is analyzed by using the FLUENT software as a calculation platform. A two-dimension model of slip coating under isosceles triangle and isosceles trapezoid substrate was established, and thin film coating fluid motions under different configuration parameters were simulated. It is pointed out that the key factor determining the turbulence generation and evolution is the parameter of substrating surface nature. The effects of the change of Reynolds number on turbulent appearance and action area are studied. The velocity contours of fluid field on different substrate surfaces are shown, and the impact of substrate geometry on the backwater region is analyzed.
基金National Natural Science Foundation of China(No.60576020,No.60606014).
文摘Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.
文摘Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our work focuses on this type of CIGS-based solar cells where CdS is replaced by a ZnS buffer layer. In this contribution, AFORS-HET software is used to simulate n-ZnO: Al/i-ZnO/n-ZnS/p-CIGS/Mo polycrystalline thin-film solar cell where the key parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and doping concentrations of absorber and buffer layers have been investigated to optimize the conversion efficiency. We find a maximum conversion efficiency of 26% with a short-circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5%.
基金The National Natural Science Foundation of China(No50276013)
文摘A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions describing the dehumidifying process are set up. Calcium chloride is applied as the desiccant. The dehumidifying process between falling liquid desiccant film and process air is analyzed and calculated by the control volume approach. Velocity field, temperature distribution and outlet parameters for both the process air and desiccant solution are obtained. The effects of inlet conditions and vertical wall height on the dehumidification process are also predicted. The results show that the humidity ratio, temperature and mass fraction of salt decrease rapidly at the inlet region but slowly at the outlet region along the vertical wall height. The dehumidification processes can be enhanced by increasing the vertical wall height, desiccant solution flow rates or inlet salt concentration in the desiccant solution, respectively. Similarly, the dehumidification process can be improved by decreasing the inlet humidity ratio or flow rates of the process air. The obtained results can improve the performance of the dehumidifier and provide the theoretical basis for the optimization design, and the ooeration and modulation of the solar liquid desiccant air-conditioning systems.
基金Supported by Program for Innovation Research Team(in Science and Technology)in the University of Henan Province(16IRTSTHN017)plan for Scientific Innovation Talent of Henan Province(154100510011).
文摘To develop an appropriate falling film evaporation device for organic fluid cogeneration, a numerical study on the gas–liquid two-phase counter-current flow characteristics of R113 inside a vertical tube under different structural conditions was conducted using the Fluent software. The effects of the tube length, tube diameter, and annular gap on the falling film flow characteristics were determined, respectively. The results indicated that under a certain spray density, the falling film thickness in the region of the steady section was almost constant with different structural parameters for the tube diameter, tube length, and annular gap. In addition, a smaller tube diameter resulted in a steadier film flow. When the tube diameter decreased to a specific value, the film thickness showed a uniform distribution along the wall surface. This indicated that a best falling tube diameter exists. Meanwhile, the film fluctuation was enhanced with an increase in the tube length. When the tube length was greater than 1.2 m, the falling film splashed and could not completely wet the wall surface. The film fluctuation was enhanced by decreasing the annular gap, and the film could not be formed when the annular gap was smaller than 1.2 mm.
基金Project(51276090) supported by the National Natural Science Foundation of ChinaProject(CXLX13_166) supported by Funding of Jiangsu Innovation Program for Graduate EducationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.
基金the financial support of the National Key Research and Development Program of China(2020YFA0710202,2018YFC0808805)。
文摘The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kettle to realize process intensification.In view of this,the fluid volume function method of computational fluid dynamics numerical simulation was used to investigate the film formation and surface renewal characteristics of horizontal polycondensation kettle under different operating conditions,including viscosity,rotating speed and liquid height.The results show that the viscosity and rotating speed were positively correlated with the film area and surface renewal in the pre-polycondensation stage.However,increasing the viscosity by several orders of magnitude in the final polycondensation kettle,the larger the film area and film thickness,but the overall surface renewal of the disk decreased.Therefore,a hexagonal hole disk is designed.By comparison,it is found that the film is more uniform,the surface update frequency is higher,and the power consumption can be reduced by more than 20%.
基金National Key R&D Program of China(Grant Nos.2021YFB2600601 and 2021YFB2600600)support provided by the Opening Funding Supported by the Key Laboratory of Transport Industry of Road Structure and Material(Research Institute of Highway Ministry of Transport),Beijing,China,the National Natural Science Foundation of China(Grant No.52278444)Postgraduate Research&Practice Innovation of Jiangsu Province(Grant No.KYCX22_0275).
文摘Many rubber friction theories or some method combined theories and field-experiments are employed to evaluate the pavement skid-resistance deterioration due to the evolution of surface textures.However,these methods are difficult to be implemented in the analysis of situations with multi-factor coupling and some extreme conditions.This study developed a framework to evaluate the skid-resistance deterioration of asphalt pavements.In this framework,the portable laser scanning was used to create the digital worn pavement model,and a hydroplaning finite element(FE)model for these digital worn pavements was constructed to evaluate coupling effects of the texture evolution and factors of slip ratio,slip angle,velocity and water film on braking-cornering characteristics of tire.In this study,the deterioration of skid-resistance of five typical asphalt pavements due the surface texture wear was systematically investigated by this framework.Compared with previous works,this study established the rubber friction models for each digital worn pavement considering the energy hysteresis of rubber and the power spectrum density of surface texture.And the rubber friction model was used to define the interaction behaviors between the tire and corresponding wore pavements in the FE hydroplaning model,rather than using an empirical friction model or a fixed friction coefficient.
基金financial support provided by National Natural Science Foundation of China(21978243)。
文摘A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.
基金supported by Key Deployment Projects of the Chinese Academy of Sciences(ZDRW-CN2019-01)National Defense Basic Scientific Research Program(JCKY2016130B203)National Natural Science Foundation of China(U1609208)。
文摘A new type of film cooling hole with micro groove structure is presented in this paper.Based on the finite volume method and the Realizable k-εmodel,the film cooling process of the hole in a flat plate structure is simulated.The surface temperature distribution and film cooling effect of different film cooling holes were analyzed.The effects of micro-groove structure on wall attachment and cooling efficiency of jet were discussed.The results show that under the same conditions,the transverse coverage width and overall protective area of the new micro-groove holes are larger than those of the ordinary cylindrical holes and special-shaped holes.Compared with ordinary holes,the new micro-groove holes can better form the film covering on the surface and enhance the overall film cooling efficiency of the wall.For example,when the blowing ratio M=1.5,the effective coverage ratio of micro-groove holes is 1.5 times the dustpan holes and is 8 times the traditional cylindrical holes.It provides reference data and experience rules for the optimization and selection of advanced cooling structure of high performance aero-gas engine hot-end components.
基金supported by the National Natural Science Foundation of China(Grant Nos.50325620 and 10372050).
文摘The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The results show that vapor film suppresses the drop breakup and hence the critical Weber number increases with the increasing thickness of vapor film. The breakup process can be divided into two stages. The drop deformation and breakup mainly occur in the later stage. Three breakup mechanisms are unveiled, which are almost the same as that of drop breakup without vapor film except for the stronger Rayleigh-Taylor instability for drop with vapor film. Our simulation results are comparable with the previous experiments.
基金The authors acknowledge that this work was financially supported by the National Natural Science Foundation of China(Grant No.51775115,No.52065005)Outstanding Youth Foundation of Gansu Province(Grant No.20JR10RA560)+1 种基金Natural Science Foundation of Gansu Province(Grant No.20JR5RA029)Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science,Gansu Agricultural University(Grant No.GSCS-2020-01).
文摘In order to achieve the construction standard of high mechanized performance of the seedbed with whole plastic-film mulching on double ridges,in this study,the forms of suppression failure were analyzed,and the key factors influencing the suppression performance were determined based on the structure of the seedbed suppression device and its working principles.The discrete element method was adopted for numerical simulation on the suppression process of the seedbed with whole plastic film mulching on double ridges;the parameters during the interaction between the suppression device and seedbed soil were extracted and analyzed,such as contact area,sinkage and horizontal traction resistance trend of press wheels on big ridges and furrows of small ridge.Taking the suppression load on big ridges,suppression load on furrows of small ridge,and advancing velocity of the combined operation machine as the independent variables,qualified rate of suppression as the response value,a mathematical model between the test factors and qualified rate of suppression was established,to explore the influence sequence of the factors on suppression qualified rate.The optimal working parameters of the suppression device were finally obtained:the suppression load on big ridges was 40 N,suppression load on furrows of small ridge was 69.8 N and the machine advancing velocity was 0.98 m/s,and the achieved mean value of suppression qualified rate was 92.6%.Field verification test showed that the mean value of suppression qualified rate was 90.3%,a mere difference of 2.3%compared with the simulation result.The actual operation of the sample machine was basically consistent with the simulation process and could reveal the mechanized suppression operation mechanism of the seedbed with whole plastic film mulching on double ridges,indicating that the established DEM model and its parameter setting were relatively accurate and reasonable.
文摘Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location.
基金the National Natural Science Foundation of China (Grant No. 50406017).
文摘Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions of the three-dimensional velocities were compared with the measured results by Laser-Doppler Velocimetry (LDV). Results reveal the secondary flow near the blade surface in the wake region behind the jet hole. Compared with the stationary cascade, there are the centrifugal force and Coriolis force existing in the flow field of the turbine rotor, and these forces make the three-dimensional flow field change in the turbine rotor, especially for the radial velocity. The effect of rotation on the flow field and the film cooling effectiveness on the pressure side is more apparent than that on the suction side as is shown in the computational and measured results, and the low film cooling effectiveness appears on the pressure surface of the turbine rotor blade compared with that of the stationary cascade.
基金Supported by the National Key Research and Development Program of China(2016YFB0303000)the National Natural Science Foundation of China(51803187)Zhejiang Provincial Natural Science Foundation of China(LQ18E030011)
文摘The flow behavior of gravity-driven falling film of non-conductive high viscosity polymer fluids on an industrial-scale vertical wavy wall was investigated in terms of film thickness and residence time distribution by numerical simulation and experiment.Falling film flow of high viscosity fluids was found to be steady on a vertical wavy wall in the presence of the large film thickness.The comparison between numerical simulation and experiment for the film thickness both in crest and trough of wavy wall showed good agreement.The simulation results of average residence time of falling film flow with different viscous fluids were also consistent with the experimental results.This work provides the initial insights of how to evaluate and optimize the falling film flow system of polymer fluid.
基金National Natural Science Foundation of China(No.B10275019)
文摘Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)
基金This work was supported in part by the National Natural Science Foundation of China(51405418)in part by the Major Program of Natural Science Foundation of Colleges and Universities in Jiangsu Province(18KJA460009)+2 种基金in part by the Jiangsu“Qing Lan Project”Talent Project(2021)Major Projects of Natural Science Research in Jiangsu Higher Education Institutions(Grant No.21KJA460009)General Program of Jiangsu University Natural Science Foundation(22KJD460009).
文摘A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications.