期刊文献+
共找到952篇文章
< 1 2 48 >
每页显示 20 50 100
Effect of melt-to-solid volume ratio and preheating temperature on Mg/Al bimetals interface by centrifugal casting
1
作者 Morteza Sarvari Mehdi Divandari +1 位作者 Hassan Saghafan Sina Ghaemi Khiavi 《China Foundry》 SCIE CAS CSCD 2023年第3期234-240,共7页
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al... Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface. 展开更多
关键词 compound casting centrifugal casting Mg/Al bimetal preheating temperature melt-to-solid volume ratio interface
下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
2
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples:Phase-field simulation 被引量:1
3
作者 李永胜 吴兴超 +2 位作者 刘苇 侯志远 梅浩杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期445-451,共7页
The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by pha... The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure. 展开更多
关键词 interface DIFFUSION temperature gradient PHASE-FIELD
下载PDF
Diamond Film Synthesis with a DC Plasma Jet:Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature 被引量:1
4
作者 Rongfa CHEN Dunwen ZUO +2 位作者 Feng XU Duoseng LI Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期495-498,共4页
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are... The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure. 展开更多
关键词 Diamond film Substrate temperature Contacting interface DC arc plasma jet
下载PDF
Prediction of the Interface Temperature Rise in Tribochemical Polishing of CVD Diamond 被引量:3
5
作者 Zewei YUAN Yan HE +2 位作者 Zhuji JIN Peng ZHENG Qiang LI 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期310-320,共11页
Tribochemcial polishing is one of the most efficient methods for polishing CVD (Chemical Vapor Deposition) diamond film due to the use of catalytic metal. However the difficulty to control the interface temperature ... Tribochemcial polishing is one of the most efficient methods for polishing CVD (Chemical Vapor Deposition) diamond film due to the use of catalytic metal. However the difficulty to control the interface temperature during polishing process often results in low material removal because of the unstable contact process. So this research investigates the contact process in the tribo- chemical polishing of CVD diamond film and proposes a dynamic contact model for predicting the actual contact area, the actual contact pressure, and the interface tem- perature in the polishing process. This model has been verified by characterizing surface metrology of the CVD diamond with Talysurf CLI2000 3D Surface Topography and measuring the polishing temperature. The theoretical and experimental results shows that the height distribution of asperities on diamond film surface in the polishing process is well evaluated by combining the height distribution of original and polished asperities. The modeled surface asperity height distribution of diamond film agrees with the actual surface metrology in polishing process. The actual contact pressure is very large due to the small actual contact area. The predicted interface temperature can reach the catalytic reaction temperature between diamond and polishing plate when the lowest rotation speed and load are 10 000 r/min and 50 N, respectively, and diamond material is significantly removed. The model may provide effective process theory for tribochemcial polishing. 展开更多
关键词 CVD diamond · Tribochemical polishing · interface temperature · Prediction
下载PDF
Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature 被引量:1
6
作者 付裕 徐锐敏 +7 位作者 郁鑫鑫 周建军 孔月婵 陈堂胜 延波 李言荣 马正强 徐跃杭 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期661-666,共6页
The interface state of hydrogen-terminated(C-H)diamond metal-oxide-semiconductor field-effect transistor(MOSFET)is critical for device performance.In this paper,we investigate the fixed charges and interface trap stat... The interface state of hydrogen-terminated(C-H)diamond metal-oxide-semiconductor field-effect transistor(MOSFET)is critical for device performance.In this paper,we investigate the fixed charges and interface trap states in C-H diamond MOSFETs by using different gate dielectric processes.The devices use Al_(2)O_(3) as gate dielectrics that are deposited via atomic layer deposition(ALD)at 80℃and 300℃,respectively,and their C-V and I-V characteristics are comparatively investigated.Mott-Schottky plots(1/C2-VG)suggest that positive and negative fixed charges with low density of about 10^(11)cm^(-2) are located in the 80-℃-and 300-℃deposition Al2O3 films,respectively.The analyses of direct current(DC)/pulsed I-V and frequency-dependent conductance show that the shallow interface traps(0.46 eV-0.52 eV and 0.53 eV-0.56 eV above the valence band of diamond for the 80-℃and 300-℃deposition conditions,respectively)with distinct density(7.8×10^(13)eV^(-1)·cm^(-2)-8.5×10^(13)eV^(-1)·cm^(-2) and 2.2×10^(13)eV^(-1)·cm^(-2)-5.1×10^(13)eV^(-1)·cm^(-2) for the 80-℃-and 300-℃-deposition conditions,respectively)are present at the Al2O3/C-H diamond interface.Dynamic pulsed I-V and capacitance dispersion results indicate that the ALD Al_(2)O_(3) technique with 300-℃deposition temperature has higher stability for C-H diamond MOSFETs. 展开更多
关键词 diamond MOSFET ALD temperature pulsed I-V interface trap conductance method
下载PDF
Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps
7
作者 张月 蒲石 +3 位作者 雷晓艺 陈庆 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期547-551,共5页
The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simu... The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simulations with varying the stress voltage Vg and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both Vg and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of Nit, is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows Vg-unaffected but T-affected relations through the normalized results. 展开更多
关键词 negative bias temperature instability reaction-diffusion model interface trap
下载PDF
Ohmic Contact at Al/TiO_2/n-Ge Interface with TiO_2 Deposited at Extremely Low Temperature
8
作者 张译 韩根全 +3 位作者 刘艳 刘欢 张进成 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期116-119,共4页
TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmiss... TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice. 展开更多
关键词 TIO Ohmic Contact at Al/TiO2/n-Ge interface with TiO2 Deposited at Extremely Low temperature Ge Al
下载PDF
Investigation of Correlation between the Temperature on Air-Snow and Snow-Ice Interfaces and the Atmospheric Air Temperature
9
作者 Vadim K. Goncharov Natalia Yu. Edush +6 位作者 Ekaterina S. Zueva Natalia Yu. Klementeva Jianmin Qin Liqin Cui Li Zhang Xiao Deng Peng Cheng 《Journal of Earth Science and Engineering》 2016年第5期245-253,共9页
关键词 大气温度 界面温度 冰雪 空气温度 工程实践 阿穆尔河 测量数据 调查结果
下载PDF
Characterization of Interface Strength as Function of Temperature and Moisture Conditions
10
作者 W.D. van Driel P.J.J.H.A. Habets +1 位作者 M.A.J. van Gils G.Q. Zhang 《电子与封装》 2007年第2期16-22,共7页
Since Moisture Sensitivity Level (MSL) tests are part of the international reliability qualification standards, all the microelectronics components/products have to pass these specifications. Therefore, it is importan... Since Moisture Sensitivity Level (MSL) tests are part of the international reliability qualification standards, all the microelectronics components/products have to pass these specifications. Therefore, it is important to be able to efficiently and accurately characterize and predict the moisture related material and interface behavior in the real manufacturing, processing, testing and application conditions. The success of interfacial fracture mechanics approach to analyze moisture-induced failures in IC packaging strongly depend on accurate characterization of the critical adhesion strength, Gc. However, its measurement is complicated by the fact that adhesion depends not only on moisture concentration, C, but also temperature, T, and mode mixity, ψ. This paper described our research to develop a reliable methodology for interface toughness evaluation as function of temperature, humidity and mode mixity. Our methodology includes using the four-point bending test and shaft-loaded-blister method. Dedicated specimens consisting of various types of moulding compounds bonded onto leadframe are manufactured. Besides temperature, moisture content and mode mixity effects, also the influences of surface treatment (leadframe oxidation and contamination) and production process on the interface fracture toughness are evaluated. Multi-physics-based numerical methods are used to transfer the experimental critical loads to an interface strength parameter. These analysis covers mechanical, moisture diffusion, vapor pressure, hygro-swelling and CTE-mismatch modeling. To test and improve the methodology, various effects are evaluated, such as crack-length dependency, material properties, specimen- width, displacement-rate of the upper support/shaft, etc. The results of the proposed methodology indicate, as expected, a change in interface toughness by mode mixity, moisture content and temperature. It is found that Gc decreases with increasing moisture content and temperature. The presence of moisture at the given interface is observed as the important factor in the reduction of interfacial strength (>>20 %~45%). Furthermore, Gc increases by a factor 3~4 when the mode mixity shifts towards mode II. 展开更多
关键词 封装 散热 温度 功能
下载PDF
Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery
11
作者 Hao Ouyang Shan Min +6 位作者 Jin Yi Xiaoyu Liu Fanghua Ning Jiaqian Qin Yong Jiang Bing Zhao Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1195-1204,共10页
Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durabili... Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries. 展开更多
关键词 Solid-state Li-O_(2)battery Composite electrolyte Cathode interface Room temperature SUCCINONITRILE
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing
12
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
下载PDF
Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over-20°C-60°C
13
作者 Siqi Guan Lin Tao +9 位作者 Pei Tang Ruopian Fang Huize Wu Nan Piao Huicong Yang Guangjian Hu Xin Geng Lixiang Li Baigang An Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期449-457,共9页
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit... Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability. 展开更多
关键词 Anion-cation co-doping Wide temperature operation Ni-richlayered cathode Phase transition Surface/interface
下载PDF
Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
14
作者 关赫 姜成语 王少熙 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期423-428,共6页
HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performa... HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performance of the HfAlO/InAlAs MOS-capacitor, samples are annealed at different temperatures for investigating the HfAlO/InAlAs interfacial characyeristics and the device's electrical characteristics. We find that as annealing temperature increases from 280 ℃ to 480 ℃, the surface roughness on the oxide layer is improved. A maximum equivalent dielectric constant of 8.47, a minimum equivalent oxide thickness of 5.53 nm, and a small threshold voltage of -1.05 V are detected when being annealed at 380 ℃;furthermore, a low interfacial state density is yielded at 380 ℃, and this can effectively reduce the device leakage current density to a significantly low value of 1×10-7 A/cm2 at 3-V bias voltage. Therefore, we hold that 380 ℃ is the best compromised annealing temperature to ensure that the device performance is improved effectively. This study provides a reliable conceptual basis for preparing and applying HfAlO/InAlAs MOS-capacitor as the isolated gate on InAs/AlSb HEMT devices. 展开更多
关键词 HfAlO/InAlAs MOS-capacitor annealing temperature interface leakage current
下载PDF
Micro scale design and experimental research of rolling interface 被引量:1
15
作者 钟掘 王艾伦 +1 位作者 吴运新 段吉安 《中国有色金属学会会刊:英文版》 CSCD 2002年第1期21-25,共5页
Aimed at some central issues of general interest and odd phenomena, an experimental research analysis and simulation of rolling interface was presented. Some root causes or originations of these issues were found. It ... Aimed at some central issues of general interest and odd phenomena, an experimental research analysis and simulation of rolling interface was presented. Some root causes or originations of these issues were found. It is shown clearly that, surface roughness of working roll, a certain vibration mode of roll gap, material types of roll sleeve and lubrication state of rolling interface are the key factors determining rolling material quality and are sensitive to dynamic stability of rolling interface. 展开更多
关键词 动态稳定 温度场 微刻度设计 轧制 接触面
下载PDF
Effect of the annealing temperature on the long-term thermal stability of Pt/Si/Ta/Ti/4H–SiC contacts
16
作者 程越 赵高杰 +3 位作者 刘益宏 孙玉俊 王涛 陈之战 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期426-431,共6页
The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed cont... The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current-voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process. 展开更多
关键词 Ohmic contact annealing temperature thermal stability interface morphology
下载PDF
Numerical simulation of mold-temperature-control solidification 被引量:2
17
作者 游东东 邵明 +1 位作者 李元元 周照耀 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第3期443-448,共6页
A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat ... A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3-0.4 mm/s, which is greater than 0.1-0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality. 展开更多
关键词 数值模拟 温度控制 凝固 固液界面
下载PDF
Study on doping effect of interface binding state in the system of PCD and PDC at superhigh pressure
18
作者 Shen Zhutong (China Science & Technology Group Company for Iron & Steel Research,Beijing 10081,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期68-69,共2页
Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d a... Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d at superhigh pressure and high temperature(HP-HT) are reported in this paper. 展开更多
关键词 doping effect interface BINDING state PCD & PDC intermediate layer superhigh pressure- high temperature(HP-HT) interface BINDING characteristics equation(E_Dd)
下载PDF
The role of hydrogen in negative bias temperature instability of pMOSFET
19
作者 李忠贺 刘红侠 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期833-838,共6页
The NBTI degradation phenomenon and the role of hydrogen during NBT stress are presented in this paper. It is found that PBT stress can recover a fraction of Vth shift induced by NBT1. However, this recovery is unstab... The NBTI degradation phenomenon and the role of hydrogen during NBT stress are presented in this paper. It is found that PBT stress can recover a fraction of Vth shift induced by NBT1. However, this recovery is unstable. The original degradation reappears soon after reapplication of the NBT stress condition. Hydrogen-related species play a key role during a device's NBT degradation. Experimental results show that the diffusion species are neutral, they repassivate Si dangling bond which is independent of the gate voltage polaxity. In addition to the diffusion towards gate oxide, hydrogen diffusion to Si-substrate must be taken into account for it also has important influence on device degradation during NBT stress. 展开更多
关键词 negative bias temperature instability device degradation hydrogen diffusion interface traps
下载PDF
Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
20
作者 张月 卓青青 +2 位作者 刘红侠 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期521-524,共4页
The effect of the static negative bias temperature (NBT) stress on a p-channel power metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of t... The effect of the static negative bias temperature (NBT) stress on a p-channel power metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction-diffusion (R-D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R-D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained. 展开更多
关键词 negative bias temperature instability (NBTI) reaction-diffusion model interface traps powerMOSFET
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部