期刊文献+
共找到958篇文章
< 1 2 48 >
每页显示 20 50 100
Effect of melt-to-solid volume ratio and preheating temperature on Mg/Al bimetals interface by centrifugal casting 被引量:2
1
作者 Morteza Sarvari Mehdi Divandari +1 位作者 Hassan Saghafan Sina Ghaemi Khiavi 《China Foundry》 SCIE CAS CSCD 2023年第3期234-240,共7页
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al... Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface. 展开更多
关键词 compound casting centrifugal casting Mg/Al bimetal preheating temperature melt-to-solid volume ratio interface
下载PDF
Design strategies and recent advancements of solid-state supercapacitor operating in wide temperature range
2
作者 Jie Zhou Zhengfeng Zhu +4 位作者 Wenhui Shi Xiangyu Shi Zhuoyuan Zheng Ye Xiong Yusong Zhu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期248-281,共34页
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues... Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions. 展开更多
关键词 ELECTRODE interface solid-state electrolyte solid-state supercapacitor wide temperature
下载PDF
Temperature Characteristics of Bilayer Thin-Film Devices Under Organic Interface Limited Current Conduction
3
作者 杨青森 彭应全 +4 位作者 邢宏伟 李训栓 袁建挺 马朝柱 赵明 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1075-1080,共6页
Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices und... Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices under the organicorganic interface limited current conduction is developed. The dependence of current, field,and carrier distribution in bilayer organic devices with the structure of "injection electrode/Layer Ⅰ/Layer Ⅱ/collection electrode" on temperature are numerically analyzed. We conclude that, for a given applied voltage, when temperature is raised, the voltage of LayerⅠ will increase,and the field will be higher. Meanwhile, the voltage of Layer Ⅲ will decrease, the field will become weaker accordingly,and the current of the device will increase. 展开更多
关键词 organic-organic interface limited temperature characteristics numerical analysis
下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
4
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples:Phase-field simulation 被引量:1
5
作者 李永胜 吴兴超 +2 位作者 刘苇 侯志远 梅浩杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期445-451,共7页
The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by pha... The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure. 展开更多
关键词 interface DIFFUSION temperature gradient PHASE-FIELD
下载PDF
Diamond Film Synthesis with a DC Plasma Jet:Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature 被引量:1
6
作者 Rongfa CHEN Dunwen ZUO +2 位作者 Feng XU Duoseng LI Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期495-498,共4页
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are... The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure. 展开更多
关键词 Diamond film Substrate temperature Contacting interface DC arc plasma jet
下载PDF
Prediction of the Interface Temperature Rise in Tribochemical Polishing of CVD Diamond 被引量:3
7
作者 Zewei YUAN Yan HE +2 位作者 Zhuji JIN Peng ZHENG Qiang LI 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期310-320,共11页
Tribochemcial polishing is one of the most efficient methods for polishing CVD (Chemical Vapor Deposition) diamond film due to the use of catalytic metal. However the difficulty to control the interface temperature ... Tribochemcial polishing is one of the most efficient methods for polishing CVD (Chemical Vapor Deposition) diamond film due to the use of catalytic metal. However the difficulty to control the interface temperature during polishing process often results in low material removal because of the unstable contact process. So this research investigates the contact process in the tribo- chemical polishing of CVD diamond film and proposes a dynamic contact model for predicting the actual contact area, the actual contact pressure, and the interface tem- perature in the polishing process. This model has been verified by characterizing surface metrology of the CVD diamond with Talysurf CLI2000 3D Surface Topography and measuring the polishing temperature. The theoretical and experimental results shows that the height distribution of asperities on diamond film surface in the polishing process is well evaluated by combining the height distribution of original and polished asperities. The modeled surface asperity height distribution of diamond film agrees with the actual surface metrology in polishing process. The actual contact pressure is very large due to the small actual contact area. The predicted interface temperature can reach the catalytic reaction temperature between diamond and polishing plate when the lowest rotation speed and load are 10 000 r/min and 50 N, respectively, and diamond material is significantly removed. The model may provide effective process theory for tribochemcial polishing. 展开更多
关键词 CVD diamond · Tribochemical polishing · interface temperature · Prediction
下载PDF
Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature 被引量:1
8
作者 Yu Fu Rui-Min Xu +7 位作者 Xin-Xin Yu Jian-Jun Zhou Yue-Chan Kong Tang-Sheng Chen Bo Yan Yan-Rong Li Zheng-Qiang Ma Yue-Hang Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期661-666,共6页
The interface state of hydrogen-terminated(C-H)diamond metal-oxide-semiconductor field-effect transistor(MOSFET)is critical for device performance.In this paper,we investigate the fixed charges and interface trap stat... The interface state of hydrogen-terminated(C-H)diamond metal-oxide-semiconductor field-effect transistor(MOSFET)is critical for device performance.In this paper,we investigate the fixed charges and interface trap states in C-H diamond MOSFETs by using different gate dielectric processes.The devices use Al_(2)O_(3) as gate dielectrics that are deposited via atomic layer deposition(ALD)at 80℃and 300℃,respectively,and their C-V and I-V characteristics are comparatively investigated.Mott-Schottky plots(1/C2-VG)suggest that positive and negative fixed charges with low density of about 10^(11)cm^(-2) are located in the 80-℃-and 300-℃deposition Al2O3 films,respectively.The analyses of direct current(DC)/pulsed I-V and frequency-dependent conductance show that the shallow interface traps(0.46 eV-0.52 eV and 0.53 eV-0.56 eV above the valence band of diamond for the 80-℃and 300-℃deposition conditions,respectively)with distinct density(7.8×10^(13)eV^(-1)·cm^(-2)-8.5×10^(13)eV^(-1)·cm^(-2) and 2.2×10^(13)eV^(-1)·cm^(-2)-5.1×10^(13)eV^(-1)·cm^(-2) for the 80-℃-and 300-℃-deposition conditions,respectively)are present at the Al2O3/C-H diamond interface.Dynamic pulsed I-V and capacitance dispersion results indicate that the ALD Al_(2)O_(3) technique with 300-℃deposition temperature has higher stability for C-H diamond MOSFETs. 展开更多
关键词 diamond MOSFET ALD temperature pulsed I-V interface trap conductance method
下载PDF
Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps
9
作者 张月 蒲石 +3 位作者 雷晓艺 陈庆 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期547-551,共5页
The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simu... The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simulations with varying the stress voltage Vg and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both Vg and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of Nit, is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows Vg-unaffected but T-affected relations through the normalized results. 展开更多
关键词 negative bias temperature instability reaction-diffusion model interface trap
下载PDF
Investigation of Correlation between the Temperature on Air-Snow and Snow-Ice Interfaces and the Atmospheric Air Temperature
10
作者 Vadim K. Goncharov Natalia Yu. Edush +6 位作者 Ekaterina S. Zueva Natalia Yu. Klementeva Jianmin Qin Liqin Cui Li Zhang Xiao Deng Peng Cheng 《Journal of Earth Science and Engineering》 2016年第5期245-253,共9页
Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature ... Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice. 展开更多
关键词 SNOW ICE AIR temperature interface ice thickness.
下载PDF
Ohmic Contact at Al/TiO_2/n-Ge Interface with TiO_2 Deposited at Extremely Low Temperature
11
作者 Yi Zhang Huan Liu +3 位作者 Gen-Quan Han Yan Liu Jin-Cheng Zhang Yue Hao 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期116-119,共4页
TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmiss... TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice. 展开更多
关键词 TIO Ohmic Contact at Al/TiO2/n-Ge interface with TiO2 Deposited at Extremely Low temperature Ge Al
下载PDF
Characterization of Interface Strength as Function of Temperature and Moisture Conditions
12
作者 W.D. van Driel P.J.J.H.A. Habets +1 位作者 M.A.J. van Gils G.Q. Zhang 《电子与封装》 2007年第2期16-22,共7页
Since Moisture Sensitivity Level (MSL) tests are part of the international reliability qualification standards, all the microelectronics components/products have to pass these specifications. Therefore, it is importan... Since Moisture Sensitivity Level (MSL) tests are part of the international reliability qualification standards, all the microelectronics components/products have to pass these specifications. Therefore, it is important to be able to efficiently and accurately characterize and predict the moisture related material and interface behavior in the real manufacturing, processing, testing and application conditions. The success of interfacial fracture mechanics approach to analyze moisture-induced failures in IC packaging strongly depend on accurate characterization of the critical adhesion strength, Gc. However, its measurement is complicated by the fact that adhesion depends not only on moisture concentration, C, but also temperature, T, and mode mixity, ψ. This paper described our research to develop a reliable methodology for interface toughness evaluation as function of temperature, humidity and mode mixity. Our methodology includes using the four-point bending test and shaft-loaded-blister method. Dedicated specimens consisting of various types of moulding compounds bonded onto leadframe are manufactured. Besides temperature, moisture content and mode mixity effects, also the influences of surface treatment (leadframe oxidation and contamination) and production process on the interface fracture toughness are evaluated. Multi-physics-based numerical methods are used to transfer the experimental critical loads to an interface strength parameter. These analysis covers mechanical, moisture diffusion, vapor pressure, hygro-swelling and CTE-mismatch modeling. To test and improve the methodology, various effects are evaluated, such as crack-length dependency, material properties, specimen- width, displacement-rate of the upper support/shaft, etc. The results of the proposed methodology indicate, as expected, a change in interface toughness by mode mixity, moisture content and temperature. It is found that Gc decreases with increasing moisture content and temperature. The presence of moisture at the given interface is observed as the important factor in the reduction of interfacial strength (>>20 %~45%). Furthermore, Gc increases by a factor 3~4 when the mode mixity shifts towards mode II. 展开更多
关键词 封装 散热 温度 功能
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing 被引量:1
13
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
下载PDF
Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery
14
作者 Hao Ouyang Shan Min +6 位作者 Jin Yi Xiaoyu Liu Fanghua Ning Jiaqian Qin Yong Jiang Bing Zhao Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1195-1204,共10页
Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durabili... Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries. 展开更多
关键词 Solid-state Li-O_(2)battery Composite electrolyte Cathode interface Room temperature SUCCINONITRILE
下载PDF
Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over-20°C-60°C
15
作者 Siqi Guan Lin Tao +9 位作者 Pei Tang Ruopian Fang Huize Wu Nan Piao Huicong Yang Guangjian Hu Xin Geng Lixiang Li Baigang An Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期449-457,共9页
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit... Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability. 展开更多
关键词 Anion-cation co-doping Wide temperature operation Ni-richlayered cathode Phase transition Surface/interface
下载PDF
Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
16
作者 He Guan Cheng-Yu Jiang Shao-Xi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期423-428,共6页
HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performa... HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performance of the HfAlO/InAlAs MOS-capacitor, samples are annealed at different temperatures for investigating the HfAlO/InAlAs interfacial characyeristics and the device's electrical characteristics. We find that as annealing temperature increases from 280 ℃ to 480 ℃, the surface roughness on the oxide layer is improved. A maximum equivalent dielectric constant of 8.47, a minimum equivalent oxide thickness of 5.53 nm, and a small threshold voltage of -1.05 V are detected when being annealed at 380 ℃;furthermore, a low interfacial state density is yielded at 380 ℃, and this can effectively reduce the device leakage current density to a significantly low value of 1×10-7 A/cm2 at 3-V bias voltage. Therefore, we hold that 380 ℃ is the best compromised annealing temperature to ensure that the device performance is improved effectively. This study provides a reliable conceptual basis for preparing and applying HfAlO/InAlAs MOS-capacitor as the isolated gate on InAs/AlSb HEMT devices. 展开更多
关键词 HfAlO/InAlAs MOS-capacitor annealing temperature interface leakage current
下载PDF
Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures 被引量:10
17
作者 林坚 王晓东 张涛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1805-1813,共9页
CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temper... CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temperature).Au catalysts are the benchmark for judging the activities of other metals in CO oxidation.Pt-group metals(PGMs) that give comparable performances are of particular interest.In this mini-review,we summarize the advances in various PGM(Pt,Pd,Ir,Rh,Ru)catalysts that have high catalytic activities in low-temperature CO oxidation arising from reducible supports or the presence of OH species.The effects of the size of the metal species and the importance of the interface between the metal and the reducible support are covered and discussed in terms of their promotional role in CO oxidation at low temperatures. 展开更多
关键词 Carbon monoxide oxidation GOLD Platinum group metal Low temperature Size effect interface
下载PDF
Mechanical properties and friction-wear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces 被引量:9
18
作者 Yong-qiang ZHAO Yong-tao MU Ming LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期472-483,共12页
The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties we... The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts. 展开更多
关键词 VN/Ag multilayer coatings heterogeneous multilayer interface transition multilayer interface tribological properties friction temperature OXIDES
下载PDF
Performance evaluation of minimum quantity lubrication by vege-table oil in terms of cutting force,cutting zone temperature,tool wear,job dimension and surface finish in turning AISI-1060 steel 被引量:3
19
作者 KHAN M.M.A. DHAR N.R. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1790-1799,共10页
In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inhere... In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction. 展开更多
关键词 Minimum quantity lubrication (MQL) Cutting force Chip-tool interface temperature Tool wear Surface roughness Dimensional deviation
下载PDF
Micro scale design and experimental research of rolling interface 被引量:1
20
作者 钟掘 王艾伦 +1 位作者 吴运新 段吉安 《中国有色金属学会会刊:英文版》 CSCD 2002年第1期21-25,共5页
Aimed at some central issues of general interest and odd phenomena, an experimental research analysis and simulation of rolling interface was presented. Some root causes or originations of these issues were found. It ... Aimed at some central issues of general interest and odd phenomena, an experimental research analysis and simulation of rolling interface was presented. Some root causes or originations of these issues were found. It is shown clearly that, surface roughness of working roll, a certain vibration mode of roll gap, material types of roll sleeve and lubrication state of rolling interface are the key factors determining rolling material quality and are sensitive to dynamic stability of rolling interface. 展开更多
关键词 动态稳定 温度场 微刻度设计 轧制 接触面
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部