With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
The authors focus on the impact of melt-free radical grafting with hindered phenolic antioxidants(AO3052)on the electrical properties of polypropylene(PP)for DC cable insulation.The DC conductivity,space charge distri...The authors focus on the impact of melt-free radical grafting with hindered phenolic antioxidants(AO3052)on the electrical properties of polypropylene(PP)for DC cable insulation.The DC conductivity,space charge distribution and breakdown characteristic tests of grafting-modified PP are performed by comparing unmodified PP.The results demonstrate that the grafting of antioxidants can effectively suppress space charge injection,owing to the deeper trap sites at the grafting molecule.The breakdown strength of the grafted PP is significantly enhanced from 30°C to 90°C and especially achieves a 5.3%-6.7%increase after the same DC-prestressed time at 90°C.The surface electrostatic potential and molecular orbitals of the grafted PP are calculated.Simulation shows that the antioxidant introduces multi-level local state traps that can effectively trap the injected space charge,thus decreasing the destruction of molecular chains by electrons and increasing the breakdown strength level.In conclusion,antioxidant grafting modification can improve the breakdown characteristics with or without DC prestress,and thus it appears to be promising in the application of PP-insulated cables.展开更多
Solid-state transformers(SSTs)have applications in medium-voltage direct current(MVDC)grids and compact power systems.High-frequency transformer(HFT)is the core component of SSTs.High levels of high frequency high dv/...Solid-state transformers(SSTs)have applications in medium-voltage direct current(MVDC)grids and compact power systems.High-frequency transformer(HFT)is the core component of SSTs.High levels of high frequency high dv/dt voltage stresses challenged the integrity of the galvanic insulation of HFTs.However,dielectric thermal runaway and resultant electrical failure mechanisms in epoxy resin(EP)cast insulation remain unclear.Dielectric heating of EP across varying voltages,frequencies,rising edges,duty cycles and DC biases were measured and corroborated by simulation.The thermal runaway threshold mainly depends on the tangency point of the loss generation and heat dissipation curves below the glass transition temperature.Observations reveal that thermal runaway does not directly cause breakdown;instead,thermal decomposition above 200°C triggers discharge and eventual failure.Simulations demonstrate that temperature rise mainly depends on the average field within the electrode region and intersegment and inter-layer distances within the HFT winding definitively impact insulation thermal runaway.By applying different criteria for MV and high-voltage(HV)transformers,the reference electric fields for insulation design with unfilled and filled EP were obtained.For instance,limiting dielectric heating below 5 K at 50 kHz necessitates an RMS average field less than 0.44 V/mm,which is much lower than dry-type transformer conventions.The authors prove the necessity of re-evaluating the permissible field strength in HFT insulation design.展开更多
Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,s...Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.展开更多
The authors introduce the intactness-aware Mosaic data augmentation strategy,designed to tackle challenges such as low accuracy in detecting defects in insulation pull rods,limited timeliness in intelligent analysis,a...The authors introduce the intactness-aware Mosaic data augmentation strategy,designed to tackle challenges such as low accuracy in detecting defects in insulation pull rods,limited timeliness in intelligent analysis,and the absence of a comprehensive database for information on insulation pull rod defects.The proposed strategy incorporates the YOLOv5s algorithm for detecting defects in insulation pull rods.Initially,the YOLOv5s network was constructed,and a dataset containing photos of insulation pull rods with white spots,fractures,impurities,and bubble flaws was compiled to capture images of defects.The research presented a data enhancement approach to improve the images and establish a dataset for insulation pull rod defects.The YOLOv5s algorithm was applied for both training and testing purposes.A comparative analysis was conducted to assess the detection performance of YOLOv5s against a conventional target detector for identifying defects in insulation pull rods.Furthermore,the utility of Mosaic's data augmentation technique,which incorporates intactness awareness,was evaluated to enhance the accuracy of identifying insulation pull rod defects.The research findings indicate that the YOLOv5s algorithm is employed for intelligent detection and precise localisation of flaws.The intactnessaware Mosaic data augmentation strategy significantly improves the accuracy of detecting faults in insulation pull rods.The YOLOv5s model used achieves a performance index mAP@0.5:0.95 of 0.563 on the test set,distinct from the training set data.With a threshold of 0.5,the mAP@0.5 score is 0.904,indicating a substantial improvement in both detection efficiency and accuracy compared to conventional target detection methods.Innovative approaches for identifying defects in insulation pull rods are introduced.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failu...Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure....As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul...This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.展开更多
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p...By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled...Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an...The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.展开更多
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金National Natural Science Foundation of China,Grant/Award Numbers:52077148,U1966203Key Science and Technology Program of Yunnan Province,China,Grant/Award Number:202202AC080002。
文摘The authors focus on the impact of melt-free radical grafting with hindered phenolic antioxidants(AO3052)on the electrical properties of polypropylene(PP)for DC cable insulation.The DC conductivity,space charge distribution and breakdown characteristic tests of grafting-modified PP are performed by comparing unmodified PP.The results demonstrate that the grafting of antioxidants can effectively suppress space charge injection,owing to the deeper trap sites at the grafting molecule.The breakdown strength of the grafted PP is significantly enhanced from 30°C to 90°C and especially achieves a 5.3%-6.7%increase after the same DC-prestressed time at 90°C.The surface electrostatic potential and molecular orbitals of the grafted PP are calculated.Simulation shows that the antioxidant introduces multi-level local state traps that can effectively trap the injected space charge,thus decreasing the destruction of molecular chains by electrons and increasing the breakdown strength level.In conclusion,antioxidant grafting modification can improve the breakdown characteristics with or without DC prestress,and thus it appears to be promising in the application of PP-insulated cables.
基金National Natural Science Foundation of China—State Grid Corporation Joint Fund for Smart Grid,Grant/Award Number:U2066216。
文摘Solid-state transformers(SSTs)have applications in medium-voltage direct current(MVDC)grids and compact power systems.High-frequency transformer(HFT)is the core component of SSTs.High levels of high frequency high dv/dt voltage stresses challenged the integrity of the galvanic insulation of HFTs.However,dielectric thermal runaway and resultant electrical failure mechanisms in epoxy resin(EP)cast insulation remain unclear.Dielectric heating of EP across varying voltages,frequencies,rising edges,duty cycles and DC biases were measured and corroborated by simulation.The thermal runaway threshold mainly depends on the tangency point of the loss generation and heat dissipation curves below the glass transition temperature.Observations reveal that thermal runaway does not directly cause breakdown;instead,thermal decomposition above 200°C triggers discharge and eventual failure.Simulations demonstrate that temperature rise mainly depends on the average field within the electrode region and intersegment and inter-layer distances within the HFT winding definitively impact insulation thermal runaway.By applying different criteria for MV and high-voltage(HV)transformers,the reference electric fields for insulation design with unfilled and filled EP were obtained.For instance,limiting dielectric heating below 5 K at 50 kHz necessitates an RMS average field less than 0.44 V/mm,which is much lower than dry-type transformer conventions.The authors prove the necessity of re-evaluating the permissible field strength in HFT insulation design.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.22178107,U21A2060,22178116)Xinjiang Uygur Autonomous Region Key Research and Development Program(Grant No.2022B01030)Shanghai Pujiang Program(Grant No.21PJD019)。
文摘Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.
文摘The authors introduce the intactness-aware Mosaic data augmentation strategy,designed to tackle challenges such as low accuracy in detecting defects in insulation pull rods,limited timeliness in intelligent analysis,and the absence of a comprehensive database for information on insulation pull rod defects.The proposed strategy incorporates the YOLOv5s algorithm for detecting defects in insulation pull rods.Initially,the YOLOv5s network was constructed,and a dataset containing photos of insulation pull rods with white spots,fractures,impurities,and bubble flaws was compiled to capture images of defects.The research presented a data enhancement approach to improve the images and establish a dataset for insulation pull rod defects.The YOLOv5s algorithm was applied for both training and testing purposes.A comparative analysis was conducted to assess the detection performance of YOLOv5s against a conventional target detector for identifying defects in insulation pull rods.Furthermore,the utility of Mosaic's data augmentation technique,which incorporates intactness awareness,was evaluated to enhance the accuracy of identifying insulation pull rod defects.The research findings indicate that the YOLOv5s algorithm is employed for intelligent detection and precise localisation of flaws.The intactnessaware Mosaic data augmentation strategy significantly improves the accuracy of detecting faults in insulation pull rods.The YOLOv5s model used achieves a performance index mAP@0.5:0.95 of 0.563 on the test set,distinct from the training set data.With a threshold of 0.5,the mAP@0.5 score is 0.904,indicating a substantial improvement in both detection efficiency and accuracy compared to conventional target detection methods.Innovative approaches for identifying defects in insulation pull rods are introduced.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000.
文摘Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金funded by the National Natural Science Foundation of China (52078068)Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX22_1391)+1 种基金the National Science Foundation of Jiangsu Province (BK20220626)Changzhou Leading Innovative Talent Introduction and Cultivation Project (CQ20210085).
文摘As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
文摘This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金funded by projects“Smart Materials,Photonics,Technologies and Engineering Ecosystem(MOTE)”(Contract No.VPP-EM-FOTONIKA-2022/1-0001)“Bio-Based Cryogenic Insulation for Aerospace Application(BioSpace)”(Contract No.4000135271/21/NL/SC).
文摘Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
文摘The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.