期刊文献+
共找到627,856篇文章
< 1 2 250 >
每页显示 20 50 100
Resistive switching behavior and mechanism of HfO_(x) films with large on/off ratio by structure design
1
作者 黄香林 王英 +2 位作者 黄慧香 段理 郭婷婷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期660-665,共6页
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra... Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure. 展开更多
关键词 HfO_(x)film resistive switching structure design interface modulation
下载PDF
Structure,ferroelectric,and enhanced fatigue properties of sol–gel-processed new Bi-based perovskite thin films of Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)
2
作者 宋伟宾 席国强 +10 位作者 潘昭 刘锦 叶旭斌 刘哲宏 王潇 单鹏飞 张林兴 鲁年鹏 樊龙龙 秦晓梅 龙有文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期608-615,共8页
Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT... Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories. 展开更多
关键词 FERROELECTRIC thin films PEROVSKITE PbTiO_(3)-BiMeO_(3)
下载PDF
Structure and electrical properties of polysilicon films doped with ammonium tetraborate tetrahydrate
3
作者 Yehua Tang Yuchao Wang +1 位作者 Chunlan Zhou Ke-Fan Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期60-68,共9页
Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are compre... Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film. 展开更多
关键词 polysilicon film boron doping ammonium tetraborate tetrahydrate(ATT) electrical properties CRYSTALLIZATION
下载PDF
High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiO_(x) Films Enabled with A Novel Microstructure-Control Technology
4
作者 Guibin Shen Xin Li +7 位作者 Yuqin Zou Hongye Dong Dongping Zhu Yanglin Jiang Xin Ren Ng Fen Lin Peter Müller-Buschbaum Cheng Mu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期153-159,共7页
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ... The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells. 展开更多
关键词 interfacial contact inverted and large-area perovskite solar cells photovoltaic materials porous NiO_(x)films renewable energy
下载PDF
Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films 被引量:7
5
作者 王永欣 王立平 薛群基 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1372-1380,共9页
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ... Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions. 展开更多
关键词 Ti-doped graphite-like carbon film MICROstructure tribological performance target current
下载PDF
Effects of sputtering pressure on nanostructure and nanomechanical properties of AlN films prepared by RF reactive sputtering 被引量:2
6
作者 魏秋平 张雄伟 +4 位作者 刘丹瑛 李劼 周科朝 张斗 余志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2845-2855,共11页
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A... Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa. 展开更多
关键词 AlN thin film reactive magnetron sputtering preferred orientation nanomechanical properties
下载PDF
Electrodeposition and characterization of nano-structured black nickel thin films 被引量:1
7
作者 李建梅 蔡超 +4 位作者 宋利晓 李劲风 张昭 薛敏钊 刘燕刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2300-2306,共7页
The electrodeposition and characterization of nano-structured black nickel coatings were presented. The influences of bath pH, electrodeposition time, stirring speed, temperature and current density on the color and m... The electrodeposition and characterization of nano-structured black nickel coatings were presented. The influences of bath pH, electrodeposition time, stirring speed, temperature and current density on the color and microstructure of the electrodeposited nickel film were investigated through naked eyes, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Meanwhile, the corrosion resistance of the optimized black nickel film was evaluated by the polarization measurement and electrochemical impedance spectroscopy (EIS) in the neutral 3.5% NaC1 solution. The results show that the color of the electrodeposited nickel film was highly dependent on the above technological parameters. The operating parameters were optimized mainly according to the color. The optimized black nickel film possesses nano-structure with an average grain diameter of about 50 nm. It also exhibits enhanced corrosion resistance when compared with white nickel coatings electrdodeposited under the same condition except the variation of the electroplating current density. 展开更多
关键词 ELECTRODEPOSITION nano-black nickel film corrosion
下载PDF
Structure characteristic and its evolution of Cu-W films prepared by dual-target magnetron sputtering deposition
8
作者 周灵平 汪明朴 +3 位作者 彭坤 朱家俊 傅臻 李周 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2700-2706,共7页
Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmissi... Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. In the initial stage of dual-target magnetron sputtering deposition process, an amorphous phase formed; then it crystallized and the analogy spinodal structure formed due to the bombardment of the sputtered particles during sputtering deposition process, the surface structure of the film without the bombardment of the sputtered particles was the amorphous one, the distribution of the crystalline and amorphous phase showed layer structure. The solid solubility with the analogy spinodal structure was calculated using the Vegard law. For Cu-13.7%W (mole fraction) film, its structure was composed of Cu-ll%W solution, Cu-37%W solution and pure Cu; for Cu 14.3%W film, it was composed of Cu-15%W solution, Cu-38%W solution, and pure Cu; for Cu-18.1%W film, it was composed of Cu-19%W solution, Cu-36% W solution and pure Cu. 展开更多
关键词 Cu-W thin film sputtering deposition amorphous phase layer structure solid solubiiity Vegard law
下载PDF
Energy Stabilities, Magnetic Properties, and Electronic Structures of Diluted Magnetic Semiconductor Zn1-xMnxS(001) Thin Films
9
作者 李丹 李磊 +1 位作者 梁春军 牛原 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期47-54,I0003,共9页
We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The en... We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable. 展开更多
关键词 Zn1-xMnxS(001) thin film Electronic structure Diluted magnetic semiconductor
下载PDF
Crystal Structure and Photocatalytic Characteristics of Nanoscate Sb-doped TiO_2 Thin Films 被引量:1
10
作者 任达森 章壮健 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期549-554,共6页
Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the... Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin tilms were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as prepared lilms were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the cryst,allization rate and the content of the anatase Ti1-x, SbO2 in the thin films was clearly enhanced because Sb replaced part. of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of t.hin films doped with 0.2% Sb reached 42.49 μA/cm^2 and 0.171 h/cm^2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non doped TiO2 anode prepared by the same method respectively. 展开更多
关键词 Crystal structure XRD pattern Raman spectra ANATASE DOPANT Anode current density
下载PDF
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures 被引量:1
11
作者 Taigao Ma Haozhu Wang L.Jay Guo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期4-16,共13页
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design... Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously. 展开更多
关键词 multilayer thin film structure inverse design foundation models deep learning structural color
下载PDF
Microstructure evolution of copper doped beryllium thin films
12
作者 周民杰 罗炳池 +3 位作者 李恺 张继成 李佳 吴卫东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1151-1155,共5页
Copper (Cu) doped beryllium (Be) thin films were deposited on silicon substrates by using a simple ion beam sputtering method, which can also realize the varying of Cu doping concentration. Detailed morphological ... Copper (Cu) doped beryllium (Be) thin films were deposited on silicon substrates by using a simple ion beam sputtering method, which can also realize the varying of Cu doping concentration. Detailed morphological and structural characterizations of the samples clearly disclose a microstructure evolution of films upon doping Cu. Doping Cu can effectively suppress film grain growth, causing a small grain size as well as uniform size distribution. Furthermore, doping Cu affects the crystallographic texture of film, which leads to the formation of more compact film structure. In particular, the surface smoothness of the doped films is significantly improved, which makes them promising candidates for various applications. 展开更多
关键词 BERYLLIUM thin films Cu doping MICROstructure
下载PDF
Magnetostatic Coupling in CoFe204/Pb(Zr0.53Ti0.47)O3 Magnetoelectric Composite Thin Films of 2-2 Type Structure
13
作者 许育东 王雷 +2 位作者 石敏 苏海林 伍光 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期115-119,I0004,共6页
CoFe204/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) magnetoelectric composite thin films of 2-2 type structure had been prepared onto Pt/Ti/SiO2/Si substrate by a sol-gel process and spin coat- ing technique. The structure of th... CoFe204/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) magnetoelectric composite thin films of 2-2 type structure had been prepared onto Pt/Ti/SiO2/Si substrate by a sol-gel process and spin coat- ing technique. The structure of the prepared thin film is substrate/PZT/CFO/PZT/CFO. Two CFO ferromagnetic layers are separated from each other by a thin PZT layer. The upper CFO layer is magnetostatically coupled with the lower CFO layer. Subsequent scan- ning electron microscopy (SEM) investigations show that the prepared thin films exhibit good morphologies and compact structure, and cross-sectional micrographs clearly display a multilayered nanostructure of multilayered thin films. The composite thin films exhibit both good magnetic and ferroelectric properties. The spacing between ferromagnetic layers can be varied by adjusting the thickness of intermediate PZT layer. It is found that the strength of magnetostatic coupling has a great impact on magnetoelectric properties of composite thin films, i.e., the magnetoelectric voltage coefficient of composite thin film tends to increase with the decreasing of pacing between two neighboring CFO ferromagnetic layers as a result of magnetostatic coupling effect. 展开更多
关键词 MAGNETOELECTRIC Composite thin film Magnetostatic coupling
下载PDF
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts
14
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
15
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
16
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
下载PDF
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
17
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
下载PDF
Suppression of Co(Ⅱ)ion deposition and hazards:Regulation of SEI film composition and structure
18
作者 Jiaqi Zhan Mingzhu Liu +4 位作者 Yutian Xie Jiarong He Hebing Zhou Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期259-265,I0007,共8页
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th... Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes. 展开更多
关键词 Lithium-ion batteries Transition metal ions SEI film Composition and structure
下载PDF
Electrodeposition and corrosion behavior of nanostructured Ni-TiN composite films 被引量:7
19
作者 朱旭蓓 蔡超 +2 位作者 郑国渠 张昭 李劲风 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2216-2224,共9页
The Ni-TiN nanocomposite film was successfully electrodeposited on brass copper substrates.The microstructures of the Ni-TiN nanocomposite film were investigated using scanning electron microscopy(SEM) and transmiss... The Ni-TiN nanocomposite film was successfully electrodeposited on brass copper substrates.The microstructures of the Ni-TiN nanocomposite film were investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM).Its average grain size was analyzed through X-ray diffraction(XRD),and its anti-corrosion property was studied through potentiodynamic scanning curves and electrochemical impedance spectroscopy(EIS).The results show that the morphology of Ni-TiN composite film is sensitively dependent on the electroplating current density,TiN nanoparticle concentration,solution stirring speed,bath temperature and pH value of solution.The average grain size of the optimized nanocomposite film is about 50 nm.Meanwhile,the Ni-TiN nanocomposite films are much more resistant to corrosion than pure Ni coatings. 展开更多
关键词 Ni-TiN nanocomposite film ELECTRODEPOSITION electrochemical impedance spectroscopy
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
20
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部