期刊文献+
共找到396篇文章
< 1 2 20 >
每页显示 20 50 100
Image Denoising with Adaptive Weighted Graph Filtering 被引量:2
1
作者 Ying Chen Yibin Tang +3 位作者 Lin Zhou Yan Zhou Jinxiu Zhu Li Zhao 《Computers, Materials & Continua》 SCIE EI 2020年第8期1219-1232,共14页
Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where cle... Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods. 展开更多
关键词 graph filtering image denoising Laplacian matrix low rank
下载PDF
Guided Intra-Patch Smoothing Graph Filtering for Single-Image Denoising
2
作者 Yibin Tang Ying Chen +3 位作者 Aimin Jiang Jian Li Yan Zhou Hon Keung Kwan 《Computers, Materials & Continua》 SCIE EI 2021年第10期67-80,共14页
Graph filtering is an important part of graph signal processing and a useful tool for image denoising.Existing graph filtering methods,such as adaptive weighted graph filtering(AWGF),focus on coefficient shrinkage str... Graph filtering is an important part of graph signal processing and a useful tool for image denoising.Existing graph filtering methods,such as adaptive weighted graph filtering(AWGF),focus on coefficient shrinkage strategies in a graph-frequency domain.However,they seldom consider the image attributes in their graph-filtering procedure.Consequently,the denoising performance of graph filtering is barely comparable with that of other state-of-the-art denoising methods.To fully exploit the image attributes,we propose a guided intra-patch smoothing AWGF(AWGF-GPS)method for single-image denoising.Unlike AWGF,which employs graph topology on patches,AWGF-GPS learns the topology of superpixels by introducing the pixel smoothing attribute of a patch.This operation forces the restored pixels to smoothly evolve in local areas,where both intra-and inter-patch relationships of the image are utilized during patch restoration.Meanwhile,a guided-patch regularizer is incorporated into AWGF-GPS.The guided patch is obtained in advance using a maximum-a-posteriori probability estimator.Because the guided patch is considered as a sketch of a denoised patch,AWGF-GPS can effectively supervise patch restoration during graph filtering to increase the reliability of the denoised patch.Experiments demonstrate that the AWGF-GPS method suitably rebuilds denoising images.It outperforms most state-of-the-art single-image denoising methods and is competitive with certain deep-learning methods.In particular,it has the advantage of managing images with significant noise. 展开更多
关键词 graph filtering image denoising MAP estimation superpixel
下载PDF
CFOA Based Low Pass and High Pass Ladder Filter—A New Configuration 被引量:1
3
作者 Praween K. Sinha Akshay Saini +1 位作者 Pranav Kumar Sumit Mishra 《Circuits and Systems》 2014年第12期293-300,共8页
A new technique using signal flow graph for conversion of ladder based filter into CFOA based filter has been proposed. The proposed technique converts the existing LC ladder based filter into CFOA in low pass and hig... A new technique using signal flow graph for conversion of ladder based filter into CFOA based filter has been proposed. The proposed technique converts the existing LC ladder based filter into CFOA in low pass and high pass configuration. The design of low pass filter and high pass filter has been realized using the proposed technique. The proposed configuration is implemented using CFOA as an active device and all the capacitors are grounded. Simulation has been carried out using simulation software I-cap. The simulation results have been demonstrated and discussed. 展开更多
关键词 CFOA-Current Feedback Operational Amplifier LADDER filter Signal Flow graph Current MODE Voltage MODE HIGH PASS filter Low PASS filter
下载PDF
结合自我特征和对比学习的推荐模型
4
作者 杨兴耀 陈羽 +3 位作者 于炯 张祖莲 陈嘉颖 王东晓 《计算机应用》 CSCD 北大核心 2024年第9期2704-2710,共7页
针对图神经网络推荐中图卷积在消息传递过程的嵌入表示过平滑和噪声问题,提出一种结合自我特征和对比学习的推荐模型(SfCLRec)。采用预训练-正式训练架构训练模型,首先预训练用户和项目的嵌入表示,通过融合节点自我特征维持节点本身的... 针对图神经网络推荐中图卷积在消息传递过程的嵌入表示过平滑和噪声问题,提出一种结合自我特征和对比学习的推荐模型(SfCLRec)。采用预训练-正式训练架构训练模型,首先预训练用户和项目的嵌入表示,通过融合节点自我特征维持节点本身的特征唯一性,并引入层级对比学习任务减少来自高阶邻居节点中的噪声;其次,在正式训练阶段根据评分机制重新构建协同图邻接矩阵;最后,根据最终嵌入得到预测评分。实验结果表明,相较于LightGCN、SimGCL(Simple Graph Contrastive Learning)等现有图神经网络推荐模型,SfCLRec在3个公开数据集ML-latest-small、Last.FM和Yelp中均取得了较好的召回率和归一化折损累计增益(NDCG),验证了SfCLRec的有效性。 展开更多
关键词 图协同过滤 过平滑 自我特征 对比学习 图神经网络 个性化推荐
下载PDF
基于多头图注意力机制的神经协同过滤推荐算法
5
作者 顾亦然 史家旺 黄丽亚 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2929-2935,共7页
目前主流的基于用户—项目二分图表征学习的推荐系统主要采用度归一化或平均池化的方法作为图上的近邻消息聚合策略,来学习用户和项目的表征向量.但是这两种聚合操作忽略了不同相邻节点对目标节点的重要性不同,从而导致最终刻画的用户... 目前主流的基于用户—项目二分图表征学习的推荐系统主要采用度归一化或平均池化的方法作为图上的近邻消息聚合策略,来学习用户和项目的表征向量.但是这两种聚合操作忽略了不同相邻节点对目标节点的重要性不同,从而导致最终刻画的用户和项目的表征表示不够准确.为此,本文提出了一种基于多头图注意力机制的神经协同过滤推荐模型(MGAT4Rec)来显示的建模目标节点与邻居节点之间的亲和力.该模型采用图注意力机制来捕获不同相邻节点的重要性并降低噪声信息的干扰,实现了对近邻节点信息的可解释性聚合;在此基础上,为了学习到更丰富的节点表征,通过使用多头图注意力机制来学习节点在不同潜在空间下的表征,将不同空间下的表征进行融合得到最终节点的表征向量.在MovieLens-100K和Amazon两个公开的数据集上进行了对比实验,MGAT4Rec在Recall@10和NDCG@10两个性能指标上相较于基线模型均有所提升. 展开更多
关键词 协同过滤 节点重要性 图注意力机制 可解释性聚合
下载PDF
CFOA Based Band Pass and Band Stop Ladder Filter—A New Configuration
6
作者 Praween K. Sinha Neelam Sharma +1 位作者 Simran Agarwal Sudipto Saha 《Circuits and Systems》 2016年第1期29-42,共14页
A new technique for the conversion of ladder based filter into CFOA based filter has been proposed. The technique uses signal flow graph and converts the existing LC ladder based filter into band pass & band stop ... A new technique for the conversion of ladder based filter into CFOA based filter has been proposed. The technique uses signal flow graph and converts the existing LC ladder based filter into band pass & band stop configurations. The design of band pass and band stop filter has been realized using the proposed technique. The proposed configuration is implemented using CFOA as an active device and all the capacitors are grounded. CFOA based circuits have greater linearity, high dynamic rate, high slew rate and high signal bandwidth. Simulation has been carried out using simulation software P Spice (v10.1). The simulation results have been demonstrated and discussed. 展开更多
关键词 CFOA-Current Feedback Operational Amplifier Ladder filter Signal Flow graph Current Mode Voltage Mode Band Pass filter Band Stop filter
下载PDF
融合标题情感和话题特征的新闻推荐算法
7
作者 艾均 洪星琦 《应用科学学报》 CAS CSCD 北大核心 2024年第5期810-822,共13页
文本是新闻最主要的媒介,传统基于情感词典的新闻推荐算法在分析情感词汇时,通常会忽略词典外的词汇情感,使得情感词汇标记不全,导致预测准确度不高和排序性能不佳等问题。针对这些问题,提出了一种推断未知词汇情感的启发式方法,设计了... 文本是新闻最主要的媒介,传统基于情感词典的新闻推荐算法在分析情感词汇时,通常会忽略词典外的词汇情感,使得情感词汇标记不全,导致预测准确度不高和排序性能不佳等问题。针对这些问题,提出了一种推断未知词汇情感的启发式方法,设计了一种对应的新闻推荐算法来验证其有效性。构建标题-情感词-情感字三部图模型,将情感词典中的词汇情感扩散到单个的字,通过情感词和情感字得到了标题情感。首先,用词袋模型提取出标题的话题特征。然后,计算标题之间的情感相似度和话题相似度,并将两种相似度融合作为综合的相似度评价指标。接着,选取与目标新闻相似度较高的新闻作为邻居。算法通过邻居新闻的时均点击量,预测出目标新闻的时均点击量,将时均点击量视为目标新闻的预测评分,最终将评分排序实现对用户的新闻推荐。在真实的网易热榜新闻数据集上验证了该方法的可行性与有效性。对比其他算法,本文算法的平均绝对误差最优准确度提升了2.2%»3.4%,均方根误差最优准确度提升了2.3%»2.9%,归一化折损累计增益平均得分提升了0.7%»1.8%。 展开更多
关键词 推荐系统 情感分析 词袋 协同过滤 三部图
下载PDF
基于邻域采样的多任务图推荐算法 被引量:2
8
作者 张俊三 肖森 +3 位作者 高慧 邵明文 张培颖 朱杰 《计算机工程与应用》 CSCD 北大核心 2024年第9期172-180,共9页
近年来,图神经网络(GNN)成为解决协同过滤的主流方法之一。它通过构建用户-物品图,模拟用户与物品的交互关系,并用GNN学习它们的特征表示。尽管现有在模型结构上的研究已取得了较大进展,但如何在图结构上更有效地进行负采样仍未有效解... 近年来,图神经网络(GNN)成为解决协同过滤的主流方法之一。它通过构建用户-物品图,模拟用户与物品的交互关系,并用GNN学习它们的特征表示。尽管现有在模型结构上的研究已取得了较大进展,但如何在图结构上更有效地进行负采样仍未有效解决。为此,提出一种基于邻域采样的多任务图推荐算法。该算法提出了一种基于GNN的邻域采样策略,该策略以每个用户为中心构建子图,将次高阶物品作为用户邻域采样的负样本,可以更有效地挖掘强负样本并提高采样质量。通过GNN对图结点进行信息聚合与特征提取,得到结点的最终嵌入表示。设计一种余弦边际损失来过滤部分冗余负样本,以有效减少采样过程中的噪声数据。同时,该算法引入了多任务策略对模型进行联合优化,以增强模型的泛化能力。在3个公开数据集上进行的大量实验表明,该算法在大多数情况下明显优于其他主流算法。 展开更多
关键词 图神经网络 协同过滤 负采样 邻域采样 余弦边际损失 多任务策略
下载PDF
考虑学科交叉需求的学术交流资源推荐方法
9
作者 栾玫琳 姜宁 +1 位作者 李家普 魏勤 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第1期159-163,共5页
针对学术交流资源数量与日俱增,学者自身研究方向多样性、学者与资源的交互行为稀疏等问题,提出考虑学科交叉需求的学术交流资源推荐方法。融合协同过滤与知识图谱算法,通过优化的TransE模型对学术交流资源知识进行表示学习,基于资源语... 针对学术交流资源数量与日俱增,学者自身研究方向多样性、学者与资源的交互行为稀疏等问题,提出考虑学科交叉需求的学术交流资源推荐方法。融合协同过滤与知识图谱算法,通过优化的TransE模型对学术交流资源知识进行表示学习,基于资源语义向量计算学术交流资源语义相似度,分析学者对学科交叉研究的需求,基于交互行为计算学者相似度,形成学者对学术交流资源的感兴趣程度,进而得出最终推荐结果。结果表明,相比传统推荐协同过滤推荐算法,该算法拥有较高的性能。 展开更多
关键词 学科交叉 学术交流资源 协同过滤 知识图谱 推荐算法
下载PDF
室内环境下基于图优化的视觉/惯性/超宽带融合定位算法
10
作者 高博 廉保旺 《光子学报》 EI CAS CSCD 北大核心 2024年第10期179-191,共13页
针对室内环境下视觉惯性里程计存在光照条件依赖和误差累计、超宽带定位易受非视距误差影响的问题,提出一种基于图优化的视觉/惯性/超宽带融合定位算法。首先,引入线特征来提高视觉特征的精度和鲁棒性;其次,设计了超宽带非视距误差识别... 针对室内环境下视觉惯性里程计存在光照条件依赖和误差累计、超宽带定位易受非视距误差影响的问题,提出一种基于图优化的视觉/惯性/超宽带融合定位算法。首先,引入线特征来提高视觉特征的精度和鲁棒性;其次,设计了超宽带非视距误差识别与抑制方法来提高超宽带定位精度。然后,将超宽带定位信息与视觉惯性里程计输出位置信息以图优化的方式进行融合,实现室内定位,最后通过仿真实验和真实室内场景实验进行了验证。该算法在低光照、弱纹理或者障碍物遮挡等复杂室内环境下,与视觉惯性里程计相比,平均定位精度最高提升约72.09%,与纯超宽带定位算法相比,平均定位精度最高提升约46.15%。该算法可在室内环境下提供精度更高、鲁棒性更强的定位结果。 展开更多
关键词 室内定位 视觉惯性里程计 超宽带 抗差卡尔曼滤波 因子图
下载PDF
基于门控图游走网络的推荐多样性研究
11
作者 方月婷 武浩 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期228-236,共9页
近年来,纯粹追求准确性的推荐算法已不再符合用户日益增长的多元化需求.因为该类算法将所有用户同等对待,导致推荐结果趋于单一化.从推荐系统的多样性角度出发,提出由两路图游走网络和门控网络组成的门控图游走网络.图游走网络在原有邻... 近年来,纯粹追求准确性的推荐算法已不再符合用户日益增长的多元化需求.因为该类算法将所有用户同等对待,导致推荐结果趋于单一化.从推荐系统的多样性角度出发,提出由两路图游走网络和门控网络组成的门控图游走网络.图游走网络在原有邻域上扩展一类新邻域,聚合两类邻域的信息,从而生成偏向准确性或多样性的推荐结果.门控网络对两个不同偏好推荐结果进行选择,得到最终推荐结果.不同于其他推荐多样性算法,门控图游走网络的推荐结果准确性-多样性比例可由超参数λ调整,而不是完全由算法决定.3个真实数据集的实验结果验证了门控图游走网络在多样化整体协作推荐方面的有效性. 展开更多
关键词 协同过滤 图神经网络 门控网络 随机游走 多样性
下载PDF
基于图优化参数辨识的船体变形测量方法
12
作者 徐东生 张霄力 +2 位作者 何荧 彭侠夫 宋凝芳 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期247-253,共7页
针对船体变形惯性匹配测量中模型参数准确性影响测量精度的问题,本文提出了一种基于图优化的船体变形模型参数辨识方法并应用于惯性匹配测量。通过分析船体变形模型预设参数对惯性匹配测量的Kalman滤波影响,得到参数对惯性匹配精度的影... 针对船体变形惯性匹配测量中模型参数准确性影响测量精度的问题,本文提出了一种基于图优化的船体变形模型参数辨识方法并应用于惯性匹配测量。通过分析船体变形模型预设参数对惯性匹配测量的Kalman滤波影响,得到参数对惯性匹配精度的影响机制;利用船体变形历史数据,结合待辨识的船体变形模型参数组成图优化超图,建立船体变形参数辨识的图优化模型,实现船体变形惯性匹配预设模型参数的辨识,最后将参数辨识结果代入惯性匹配方程以完成准确测量。仿真实验验证了该方法可以有效地完成船体变形参数辨识,保障船体变形惯性匹配测量的准确度。 展开更多
关键词 船体变形 惯性匹配测量 预设参数 KALMAN滤波 图优化 超图 参数辨识 准确测量
下载PDF
融合原型对比与特征筛选的图协同过滤模型 被引量:1
13
作者 王奇 宋玉蓉 +1 位作者 李汝琦 曲鸿博 《南京邮电大学学报(自然科学版)》 北大核心 2024年第5期102-110,共9页
图卷积在协同过滤推荐系统上取得了巨大的成功,但在真实的推荐场景中基于协同过滤的推荐方法往往会受到稀疏数据的影响,同时现有的图协同过滤方法又普遍存在对用户-项目交互信息的分析和利用不彻底的问题,如未对交互特征中的噪声进行处... 图卷积在协同过滤推荐系统上取得了巨大的成功,但在真实的推荐场景中基于协同过滤的推荐方法往往会受到稀疏数据的影响,同时现有的图协同过滤方法又普遍存在对用户-项目交互信息的分析和利用不彻底的问题,如未对交互特征中的噪声进行处理,这些问题使得现有方法的推荐效果不理想。针对上述问题,提出了一种融合原型对比与特征筛选的图协同过滤模型,在对交互信息进行噪声特征过滤的同时,利用提出的原型对比学习任务捕捉节点间的潜在联系,以此增强用户和项目的表示。在3个真实的数据集上的实验结果表明,该方法在缓解数据稀疏问题的同时,提高了推荐的效率和性能。 展开更多
关键词 推荐算法 协同过滤 图卷积神经网络 对比学习 特征筛选
下载PDF
基于元学习的图神经网络冷启动推荐
14
作者 吴斯琦 赵清华 于雨晨 《计算机工程与科学》 CSCD 北大核心 2024年第9期1675-1684,共10页
为解决推荐过程中冷启动问题对新用户或新项目场景性能的限制,提出了一种基于元学习的图神经网络冷启动推荐模型MetaNGCF,以提高推荐的准确性和多样性。首先,提出具有自适应的感知元学习结构来构建用户与项目交互图和神经图混合的模型,... 为解决推荐过程中冷启动问题对新用户或新项目场景性能的限制,提出了一种基于元学习的图神经网络冷启动推荐模型MetaNGCF,以提高推荐的准确性和多样性。首先,提出具有自适应的感知元学习结构来构建用户与项目交互图和神经图混合的模型,将用户行为与项目知识统一表达,融合自适应加权损失策略来实时校正元学习路径,以避免噪声任务对模型造成的损害;其次,运用聚类算法将高维特征空间转化为低维低秩特征空间,并利用用户偏好学习任务聚合层梯度对协作信号进行编码,自动归纳出用户与项目之间的高阶连通性,进而捕捉NGCF通用知识语义;最后,与现有的MetaHIN算法进行对比验证,实验结果表明MetaNGCF在Recall@20和NDCG@20上具有更佳的性能。 展开更多
关键词 元学习 冷启动推荐 协同过滤 图神经网络
下载PDF
基于对比共识图学习的多视图属性图聚类算法
15
作者 刘鹏仪 胡节 +1 位作者 王红军 彭博 《计算机科学》 CSCD 北大核心 2024年第11期73-80,共8页
多视图属性图聚类可以将具有多个视图的图数据的节点划分到不同的簇中,近年来受到了研究者的广泛关注。目前,已有许多基于图神经网络的多视图属性图聚类方法被提出并取得了较好的聚类性能。然而,由于图神经网络难以处理数据收集过程中... 多视图属性图聚类可以将具有多个视图的图数据的节点划分到不同的簇中,近年来受到了研究者的广泛关注。目前,已有许多基于图神经网络的多视图属性图聚类方法被提出并取得了较好的聚类性能。然而,由于图神经网络难以处理数据收集过程中出现的图噪声,因此基于图神经网络的多视图属性图方法很难进一步提高聚类性能。为此,提出了一种新的基于对比共识图学习的多视图属性图聚类算法,以降低噪声对聚类的影响从而得到更好的结果。该算法包括4个步骤:首先,使用图滤波消除图上的噪声,并同时保留完整的图结构;然后,选择少量节点来学习共识图,以降低计算复杂度;随后,使用图对比正则化来帮助学习共识图;最后,利用谱聚类获得聚类结果。大量的实验结果表明,与当前最先进的方法相比,所提算法能够很好地减少图数据中噪声对聚类的影响,并以较高的执行效率取得良好的聚类结果。 展开更多
关键词 多视图学习 属性图数据 图聚类 对比共识图学习 图过滤
下载PDF
基于分区过滤-增量验证的图编辑相似查询
16
作者 王习特 白梅 +2 位作者 王朝金 马茜 李冠宇 《计算机学报》 EI CSCD 北大核心 2024年第2期375-395,共21页
图编辑相似查询问题是指从图集G中查询出所有与查询图q的图编辑距离(Graph Edit Distance,GED)在给定阈值τ内的数据图.由于GED计算是NP-Hard问题,现有的研究多采用过滤-验证框架进行查询,对未能过滤掉的图采用A*-GED算法验证.本文提出... 图编辑相似查询问题是指从图集G中查询出所有与查询图q的图编辑距离(Graph Edit Distance,GED)在给定阈值τ内的数据图.由于GED计算是NP-Hard问题,现有的研究多采用过滤-验证框架进行查询,对未能过滤掉的图采用A*-GED算法验证.本文提出了分区过滤-增量验证框架PFIV来处理图相似查询问题,在增强过滤效果的同时,还能加快验证速度.首先,在过滤阶段提出了2种分区策略,用来加快分区速度.(1)映射顶点顺序策略:在分区过程中,基于图的特征信息和结构信息提出分区时顶点的映射顺序,尽快过滤掉不相似的图,减少计算量;(2)分区结束条件策略:在分区过程中,设置分区结束条件,加快不相似图的过滤速度.其次,在验证阶段提出了增量验证策略,利用过滤阶段保留的映射结果,设计状态空间树,进行增量验证,加快验证阶段的计算.最后,通过大量实验验证了PFIV能够高效地处理图编辑相似查询问题,对比原有算法,查询效率提高8%~17%,并证明了所提出策略的有效性. 展开更多
关键词 图相似 GED 分区过滤 增量验证 图数据
下载PDF
一种跨区域跨评分协同过滤推荐算法
17
作者 于旭 彭庆龙 +6 位作者 詹定佳 杜军威 刘金环 林俊宇 巩敦卫 张子迎 于婕 《计算机研究与发展》 EI CSCD 北大核心 2024年第12期3134-3153,共20页
传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborat... 传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborative filtering recommendation algorithm,CRCRCF),相对于传统跨评分协同过滤范式,该算法不仅能有效挖掘辅助域重要知识,而且可以挖掘目标域中评分密集区域的重要知识,进一步提升目标域整体,尤其是评分稀疏区域的评分预测精度.首先,针对用户和项目,分别进行活跃用户和非活跃用户、热门项目和非热门项目的划分.利用图卷积矩阵补全算法提取目标域活跃用户和热门项目、辅助域中全体用户和项目的隐向量.其次,对活跃用户和热门项目分别构建基于自教学习的深度回归网络学习目标域和辅助域中隐向量的映射关系.然后,将映射关系泛化到全局,利用非活跃用户和非热门项目在辅助域上相对较准确的隐向量推导其目标域上的隐向量,依次实现了跨区域映射关系迁移和跨评分的隐向量信息迁移.最后,以求得的非活跃用户和非热门项目在目标域上的隐向量为约束,提出受限图卷积矩阵补全模型,并给出相应推荐结果.在MovieLens和Netflix数据集上的仿真实验显示CRCRCF算法较其他最先进算法具有明显优势. 展开更多
关键词 协同过滤 跨区域跨评分推荐 图卷积矩阵补全 自教学习 深度回归网络 受限图卷积矩阵补全
下载PDF
两阶段文档筛选和异步多粒度图多跳问答
18
作者 张雪松 李冠君 +3 位作者 聂士佳 张大伟 吕钊 陶建华 《计算机技术与发展》 2024年第1期121-127,共7页
多跳问答旨在通过对多篇文档内容进行推理,来预测问题答案以及针对答案的支撑事实。然而当前的多跳问答方法在文档筛选任务中旨在找到与问题相关的所有文档,未考虑到这些文档是否都对找到答案有所帮助。因此,该文提出一种两阶段的文档... 多跳问答旨在通过对多篇文档内容进行推理,来预测问题答案以及针对答案的支撑事实。然而当前的多跳问答方法在文档筛选任务中旨在找到与问题相关的所有文档,未考虑到这些文档是否都对找到答案有所帮助。因此,该文提出一种两阶段的文档筛选方法。第一阶段通过对文档进行评分且设置较小的阈值来获取尽可能多的与问题相关文档,保证文档的高召回率;第二阶段对问题答案的推理路径进行建模,在第一阶段的基础上再次提取文档,保证文档的高精确率。此外,针对由文档构成的多粒度图,提出一种新颖的异步更新机制来进行答案预测以及支撑事实预测。提出的异步更新机制将多粒度图分为异质图和同质图来进行异步更新以更好地进行多跳推理。该方法在性能上优于目前主流的多跳问答方法,验证了该方法的有效性。 展开更多
关键词 多跳问答 文档筛选 多粒度图 异步更新 答案预测
下载PDF
融合结构邻居和语义邻居的解耦图对比学习推荐模型
19
作者 杨红伟 曹家晟 +1 位作者 刘学军 邢卓雅 《计算机系统应用》 2024年第7期149-160,共12页
基于GCN的协同过滤模型在推荐领域取得了较好的效果,但现有的图协同过滤学习方法通常不区分用户和项目的交互关系,不易挖掘用户行为的潜在意图.因此,提出了一种融合结构邻居和语义邻居的解耦图对比学习推荐模型.首先,将用户和项目嵌入... 基于GCN的协同过滤模型在推荐领域取得了较好的效果,但现有的图协同过滤学习方法通常不区分用户和项目的交互关系,不易挖掘用户行为的潜在意图.因此,提出了一种融合结构邻居和语义邻居的解耦图对比学习推荐模型.首先,将用户和项目嵌入投影到独立空间进行意图解耦;其次,在图传播阶段,依据用户和项目的意图特征挖掘其潜在语义邻居,根据意图相似性对结构邻居和语义邻居进行解耦表征学习,生成用户和项目的完整高阶表示.在对比学习阶段,对节点进行随机扰动并生成对比视图,构建结构和语义的对比学习任务;最后,根据多任务策略,对监督任务和对比学习任务进行联合优化.在真实数据集Yelp2018和Amazon-Book上的实验表明,提出的模型相比最优基准模型NCL在两个数据集上的Recall@20指标提高了7.54%、5.65%,NDCG@20指标提高了8.57%、6.28%. 展开更多
关键词 推荐系统 协同过滤 图对比学习 解耦表示学习
下载PDF
基于图滤波与自表示的无监督特征选择算法
20
作者 梁云辉 甘舰文 +2 位作者 陈艳 周芃 杜亮 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期655-664,共10页
针对现有方法未考虑数据的高阶邻域信息而不能完全捕捉数据内在结构的问题,提出一种基于图滤波与自表示的无监督特征选择算法.首先,将高阶图滤波器应用于数据获得其平滑表示,并设计一个正则化器联合高阶图信息进行自表示矩阵学习以捕捉... 针对现有方法未考虑数据的高阶邻域信息而不能完全捕捉数据内在结构的问题,提出一种基于图滤波与自表示的无监督特征选择算法.首先,将高阶图滤波器应用于数据获得其平滑表示,并设计一个正则化器联合高阶图信息进行自表示矩阵学习以捕捉数据的内在结构;其次,应用l_(2,1)范数重建误差项和特征选择矩阵,以增强模型的鲁棒性与稀疏性选择判别的特征;最后,用一个迭代算法有效地求解所提出的目标函数,并进行仿真实验以验证该算法的有效性. 展开更多
关键词 图滤波 自表示 稀疏 无监督特征选择
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部