As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac...As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted.展开更多
Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. I...Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter (ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed filter.展开更多
The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisup...The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisupervised learning techniques are all carried out under the assumption that the labeled data and the unlabeled data are in the same distribution,and its performance is mainly due to the two being in the same distribution state.When there is out-of-class data in unlabeled data,its performance will be affected.In practical applications,it is difficult to ensure that unlabeled data does not contain out-of-category data,especially in the field of Synthetic Aperture Radar(SAR)image recognition.In order to solve the problem that the unlabeled data contains out-of-class data which affects the performance of the model,this paper proposes a semi-supervised learning method of threshold filtering.In the training process,through the two selections of data by the model,unlabeled data outside the category is filtered out to optimize the performance of the model.Experiments were conducted on the Moving and Stationary Target Acquisition and Recognition(MSTAR)dataset,and compared with existing several state-of-the-art semi-supervised classification approaches,the superiority of our method was confirmed,especially when the unlabeled data contained a large amount of out-of-category data.展开更多
To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the i...In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the impact of these error sources on measurement is evaluated.To eliminate interference signal existing in the sampled data of the measurement,a modified wavelet threshold filtering method is presented.The results of the simulation and measurement show that the estimation-precision of the proposed method is improvement remarkably compared with the fast Fourier transform method,and the calculation work is reduced compared with the conventional wavelet threshold filtering methods,furthermore,the phenomenon of a common threshold of "killing" is solved thoroughly.展开更多
The concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set is considered. In fact, this is a generalization of quasi-coincidence of a fuzzy point with a fuzzy set. By using this new i...The concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set is considered. In fact, this is a generalization of quasi-coincidence of a fuzzy point with a fuzzy set. By using this new idea, the notion of interval valued (∈,∈ ∨q)-fuzzy filters in BL-algebras which is a generalization of fuzzy filters of BL-algebras, is defined, and related properties are investigated. In particular, the concept of a fuzzy subgroup with thresholds is extended to the concept of an interval valued fuzzy filter with thresholds in BL-algebras.展开更多
When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the...When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the problem an improved anisotropic diffu- sion filtering model is proposed. Firstly, a novel diffusion function is introduced based on Perona and Malik model, which well overcomes the high rate of convergence. Secondly, the gradient threshold is modified to an adaptive estimation function, so it is bet- ter at adaptive threshold regulations according to the pixels and iteration times. Finally, the edges are extracted from the restored im- ages and the results are evaluated quantificationally. It is shown from the experiments that the proposed method is effective not only in noise reduction but also in details preserved.展开更多
This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the...This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the original method in the theoretical analysis and VLSI realization.展开更多
基金funded by the National Natural Science Foundation Item (41674068)Seismic Youth Funding of GEC (YFGEC2016001)
文摘As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted.
文摘Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter (ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed filter.
基金Our research is funded by National Key R&D Program of China(2021YFC3320302)Fundamental Research(JCKY2020210B019)+1 种基金Natural Science Foundation of Heilongjiang Province(No.F2018006)Network threat depth analysis software(KY10800210013).
文摘The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisupervised learning techniques are all carried out under the assumption that the labeled data and the unlabeled data are in the same distribution,and its performance is mainly due to the two being in the same distribution state.When there is out-of-class data in unlabeled data,its performance will be affected.In practical applications,it is difficult to ensure that unlabeled data does not contain out-of-category data,especially in the field of Synthetic Aperture Radar(SAR)image recognition.In order to solve the problem that the unlabeled data contains out-of-class data which affects the performance of the model,this paper proposes a semi-supervised learning method of threshold filtering.In the training process,through the two selections of data by the model,unlabeled data outside the category is filtered out to optimize the performance of the model.Experiments were conducted on the Moving and Stationary Target Acquisition and Recognition(MSTAR)dataset,and compared with existing several state-of-the-art semi-supervised classification approaches,the superiority of our method was confirmed,especially when the unlabeled data contained a large amount of out-of-category data.
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
基金supported by the National Basic Research Program of China (973 Program) (973-61334)
文摘In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the impact of these error sources on measurement is evaluated.To eliminate interference signal existing in the sampled data of the measurement,a modified wavelet threshold filtering method is presented.The results of the simulation and measurement show that the estimation-precision of the proposed method is improvement remarkably compared with the fast Fourier transform method,and the calculation work is reduced compared with the conventional wavelet threshold filtering methods,furthermore,the phenomenon of a common threshold of "killing" is solved thoroughly.
基金Supported by the National Natural Science Foundation of China(60474022)a grant of the Key Science Foundation of Education Committee of Hubei Province(D200729003)
文摘The concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set is considered. In fact, this is a generalization of quasi-coincidence of a fuzzy point with a fuzzy set. By using this new idea, the notion of interval valued (∈,∈ ∨q)-fuzzy filters in BL-algebras which is a generalization of fuzzy filters of BL-algebras, is defined, and related properties are investigated. In particular, the concept of a fuzzy subgroup with thresholds is extended to the concept of an interval valued fuzzy filter with thresholds in BL-algebras.
基金Supported by Natural Science Foundation of China(61163047)Natural Science Foundation of Jiangxi Province(20114BAB201036)
文摘When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the problem an improved anisotropic diffu- sion filtering model is proposed. Firstly, a novel diffusion function is introduced based on Perona and Malik model, which well overcomes the high rate of convergence. Secondly, the gradient threshold is modified to an adaptive estimation function, so it is bet- ter at adaptive threshold regulations according to the pixels and iteration times. Finally, the edges are extracted from the restored im- ages and the results are evaluated quantificationally. It is shown from the experiments that the proposed method is effective not only in noise reduction but also in details preserved.
基金Supported by the National Natural Science Foundation of China
文摘This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the original method in the theoretical analysis and VLSI realization.