A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gr...A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gray distinction information, is pointed out for the bilateral filtering. The new method can not only well restrain noise but also keep much more weak edges and details of an image, and preserve the original color transition of color images. Experimental results show the effectiveness for image denoising with our method.展开更多
Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a de...Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a decrease of the peak intensity and an increase of the sidelobe intensity. Here, we calculate the Strehl ratio as a function of the core size for the most used binary phase filters. Furthermore, we show that this relation approaches the fundamental limit of the attainable Strehl ratio at the focal plane for any filter. Finally, we show the calculation of the peak-to-sidelobe ratio in order to check the system viability in every application.展开更多
The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing throug...The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.展开更多
基金the National Natural Science Foundation of China under Grant No.60778046.
文摘A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gray distinction information, is pointed out for the bilateral filtering. The new method can not only well restrain noise but also keep much more weak edges and details of an image, and preserve the original color transition of color images. Experimental results show the effectiveness for image denoising with our method.
基金supported by the by the Ministerio de Economía y Competitividad under project FIS2012-31079
文摘Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a decrease of the peak intensity and an increase of the sidelobe intensity. Here, we calculate the Strehl ratio as a function of the core size for the most used binary phase filters. Furthermore, we show that this relation approaches the fundamental limit of the attainable Strehl ratio at the focal plane for any filter. Finally, we show the calculation of the peak-to-sidelobe ratio in order to check the system viability in every application.
文摘The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.