期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation of Effect of Porosity and Fuel Inlet Velocity on Diffusion Filtration Combustion 被引量:2
1
作者 TAROKH Ali LAVRENTEV Artem MANSOURI Abraham 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1278-1288,共11页
Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on t... Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s. 展开更多
关键词 NON-PREMIXED diffusion filtration combustion methane-air combustion porous media numerical simulation
原文传递
Experimental Investigation of Solid Fuel Combustion Process in a Hybrid Porous Reactor
2
作者 Vojislav Jovicic Nataliia Fedorova +2 位作者 Ana Zbogar-Rasic Mario Toledo Torres Antonio Delgado 《Journal of Energy and Power Engineering》 2017年第9期589-596,共8页
One of the most significant human-made methane emission sources is the MSW (municipal solid waste), deposited on sanitary landfills and open dumps. Within this work, an alternative MSW treatment concept is presented... One of the most significant human-made methane emission sources is the MSW (municipal solid waste), deposited on sanitary landfills and open dumps. Within this work, an alternative MSW treatment concept is presented, which could provide a relatively clean waste/biomass-to-energy transformation. The proposed procedure comprises of a combustion and a gasification (or pyrolysis) step, which are consecutively taking place in a two-stage hybrid porous reactor system. The core of the system is two packed bed reactors, in which solid fuel (waste or biomass) is mixed with inert ceramic particles of similar size. This paper overviews the initial experimental investigation of the combustion step of a hybrid mixture, composed of wood pellets (fuel) and alumina balls (inert ceramic particles) in a 250 ram-high batch reactor. The temperature profile along the reactor, the concentration of CO and the flame front propagation velocity were measured as a function of the ceramic particle size (11 and 20 mrn), the inert-to-fuel mass ratio (0:1, 2:1, 3:1) and the airflow rate (30, 42, 60 1/min). Experiments indicate that an increase of the mass ratio of inert-to-fuel material and a decrease of the inert ceramic particles size lead to a decrease of the maximum temperature of the packed hybrid bed. Measured CO concentrations showed strong dependence on the inert ceramic particle size, i.e. the particle size reduction from 20 to 11 mm resulted in a significant reduction of CO-emission peaks. The maximum flame front propagation velocity of 0.2 mm/sec was detected for the airflow of 42 1/min, the particle size of 20 mm and the mass ratio of 3:1. 展开更多
关键词 combustion allothermal gasification MSW hybrid filtration combustion packed bed.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部