期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system 被引量:15
1
作者 覃文庆 任浏祎 +2 位作者 徐阳宝 王佩佩 马喜红 《Journal of Central South University》 SCIE EI CAS 2012年第6期1711-1717,共7页
Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation m... Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds. 展开更多
关键词 fine cassiterite particle ELECTRO-FLOTATION salicylhydroxamic acid (SHA) tributyl phosphate (TBP) ADSORPTION
下载PDF
The Recovery of Fine Cassiterite from Metasedimentary Rock
2
作者 Ismail Ibrahim Md Muzayin Alimon Salmah Baharuddin 《Journal of Geological Resource and Engineering》 2015年第3期134-142,共9页
It is known that ore containing cassiterite (SnO2) has been our most important source of tin since antiquity and its successful separation continuously pose problems to mineral processors. The situation is more pron... It is known that ore containing cassiterite (SnO2) has been our most important source of tin since antiquity and its successful separation continuously pose problems to mineral processors. The situation is more pronounced since the depletion of the more easily recoverable alluvial reserves forces us to work with the more complex deposits such as hardrock cassiterite ores. In order to understand more about the challenges in processing complex tin ore deposits, a metasedimentary rock ore sample from a mine in Malaysia was used in this study. Chemical analysis by wet method shows that SnO2 content in the sample was 2.86%, while for mineralogical analysis, the x-ray diffractogram (XRD) of the sample had identified that besides cassiterite, the sample also contained minerals such as quartz (SiO2) and clinochlore. Furthermore, the FESEM (field emission scanning electron microscope) micrograph analysis carried out on a polish section of the sample indicated that the fine cassiterite particles (approximately 80 ~tm) were found to be disseminated in the quartz minerals. Prior to the separation processes, grindability studies were carried-out on crushed samples to liberate the cassiterite from other gangue minerals and at the same time, avoid producing high percentage of fines. For the separation of tin from gangue minerals on the ground samples, two stages of gravity separations by shaking tables were carried out. The first stage was run on ground samples and for the second stage, the middling product from the first stage was re-tabled. Magnetic separation process on Concentrate 1 (stage 1) and Concentrate 2 (stage 2) products from the shaking table increased the grade of SnO2 to 46.85% and 61.90% respectively (as a non-magnetic products). Further concentration process of these non-magnetic products by high tension separator, increased the grade of SnO2 from 85.05% to 98.77%. 展开更多
关键词 fine cassiterite GRINDING shaking table magnetic separation high tension separation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部