Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study wa...Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.展开更多
以大兴安岭地区南瓮河保护区落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica Fischer)、落叶松-白桦混交林(Mixture of Larix gmelinii and Betula platyphylla)(阴坡、阳坡)、沟塘草甸等4种典型林分为研究对象,运用气象要素回...以大兴安岭地区南瓮河保护区落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica Fischer)、落叶松-白桦混交林(Mixture of Larix gmelinii and Betula platyphylla)(阴坡、阳坡)、沟塘草甸等4种典型林分为研究对象,运用气象要素回归法,对春季防火期和秋季防火期内的地表细小死可燃物含水率动态进行测定,构建了不同防火期、不同林型地表死可燃物含水率的预测模型,分析了相应模型的预测误差。结果表明:同林型地表可燃物含水率在春季防火期和秋季防火期差异显著;在秋季防火期,5个典型林型的地表死可燃物含水率预测平均绝对误差为0.167,平均相对误差为0.218,低于春季防火期模型和春季-秋季混合模型;秋季防火期模型对可燃物含水率预测效果最好。气象要素回归法适用于南瓮河保护区典型林型地表死可燃物含水率预测。展开更多
基金the National Key Research and Development Program of ChinaKey Projects for Strategic International Innovative Cooperation in Science and Technology(2018YFE0207800)+1 种基金Fundamental Research Funds for the Central Universities(2572019BA03)partly by the China Scholarship Council(CSC No.2016DFH417)。
文摘Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.
文摘以大兴安岭地区南瓮河保护区落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica Fischer)、落叶松-白桦混交林(Mixture of Larix gmelinii and Betula platyphylla)(阴坡、阳坡)、沟塘草甸等4种典型林分为研究对象,运用气象要素回归法,对春季防火期和秋季防火期内的地表细小死可燃物含水率动态进行测定,构建了不同防火期、不同林型地表死可燃物含水率的预测模型,分析了相应模型的预测误差。结果表明:同林型地表可燃物含水率在春季防火期和秋季防火期差异显著;在秋季防火期,5个典型林型的地表死可燃物含水率预测平均绝对误差为0.167,平均相对误差为0.218,低于春季防火期模型和春季-秋季混合模型;秋季防火期模型对可燃物含水率预测效果最好。气象要素回归法适用于南瓮河保护区典型林型地表死可燃物含水率预测。