期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of supersonic fine particle bombarding on thermal cyclic failure lifetime of thermal barrier coating 被引量:1
1
作者 陈亚军 林晓娉 +3 位作者 王志平 王立君 纪朝辉 董允 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第4期521-526,共6页
Thermal barrier coating ( TBC) consisting of a NiCoCrAlY bond coat ( BC) and a ZrO2-8 wt. % Y2O3 topcoat ( TC) was fabricated on the nickel-base superalloy by air plasma spray ( APS) . The BC was treated by supersonic... Thermal barrier coating ( TBC) consisting of a NiCoCrAlY bond coat ( BC) and a ZrO2-8 wt. % Y2O3 topcoat ( TC) was fabricated on the nickel-base superalloy by air plasma spray ( APS) . The BC was treated by supersonic fine particle bombarding ( SFPB) . Thermal cyclic failure and residual stress in thermally grown oxide ( TGO) scale were studied by SEM with EDS and ruby fluorescence spectroscopy ( RFS) . As shown in the results,after treated by SFPB,thickening of TGO was relatively slow,which reduced the level of growth stress. The TBC with SFPB treatment was still remained well undergoing 350 times of thermal cycle. However,after thermal cycle with the same times,the separation of TC was observed in TBC without SFPB treatment. The residual stress analysis by RFS showed that the residual stress of SFPB-treated TBC increased with the increasing number of thermal cycle. The residual stress of conventional TBC reached a value of 650 MPa at 350 times of cycle and that of SFPB-treated TBC only reached 532 MPa at 400 times of cycle. The BC with SFPB treatment after 400 times of cycle was analyzed by RFS,the high stress value was not observed in local thickened region of TGO. Thermal cycling resistance of TBC can be improved by the SFPB technology. 展开更多
关键词 supersonic fine particle bombarding TGO thermal cycles residual stress TBC
下载PDF
Effects of supersonic fine particles bombarding on thermal barrier coatings after isothermal oxidation 被引量:1
2
作者 韩玉君 叶福兴 +2 位作者 丁坤英 王志平 陆冠雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1629-1637,共9页
This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond co... This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond coat before applying the topcoat.After isothermal oxidation at 1000 °C for different time,the surface state of the bond coat and its phase transformation were investigated using X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectrometry(EDS),transmission electron microscopy(TEM) and Cr3+ luminescence spectroscopy.The dislocation density significantly increases after SFPB process,which can generate a large number of diffusion channels in the area of the surface of the bond coat.At the initial stage of isothermal oxidation,the diffusion velocity of Al in the bond coat significantly increases,leading to the formation of a layer of stable α-Al2O3 phase.A great number of Cr3+ positive ions can diffuse via diffusion channels during the transient state of isothermal oxidation,which can lead to the presence of(Al0.9Cr0.1)2O3 phase and accelerate the γ→θ→α phase transformation.Cr3+ luminescence spectroscopy measurement shows that the residual stress increases at the initial stage of isothermal oxidation and then decreases.The residual stress after isothermal oxidation for 310 h reduces to 0.63 GPa compared with 0.93 GPa after isothermal oxidation for 26 h.In order to prolong the lifespan of TBCs,a layer of continuous,dense and pure α-Al2O3 with high oxidation resistance at the interface between topcoat and bond coat can be obtained due to additional SFPB process. 展开更多
关键词 thermal barrier coatings(TBCs) supersonic fine particles bombarding(SFPB) isothermal oxidation Cr3+ luminescence spectroscopy dislocation density diffusion channel
下载PDF
Effect of Supersonic Fine Particles Bombarding on the Service Life of Thermal Barrier Coating 被引量:1
3
作者 LIN Xiaoping DONG Yun +3 位作者 WANG Zhiping LIU Shiqiang REN Zhimin DING Kunying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期911-916,共6页
Thermally Grown Oxide(TGO) is a dominating component in controlling the effectiveness of thermal barrier coating.During the growth of TGO,whether we could homogeneously distribute Al atom on the TGO and the intermed... Thermally Grown Oxide(TGO) is a dominating component in controlling the effectiveness of thermal barrier coating.During the growth of TGO,whether we could homogeneously distribute Al atom on the TGO and the intermediate metal layer will be the key factor in forming TGO with continuous,uniform and single-ingredient(Al2O3).In this experiment,we bombarded particles on to the metallic bound layer.We studied the influence of supersonic particle bombardment on the diffusion of Al.We hope to control the growth of TGO by monitoring the diffusion of Al.Thermal barrier coating(TBC),which consists of a NiCoCrAlY bond coat and a ZrO2-8Y2O3(wt.%) topcoat(TC),is fabricated on the nickel-base superalloy by air plasma spray(APS).NiCoCrAlY bond coat is treated by supersonic fine particles bombarding(SFPB).The morphology,oxidation behavior of TBC and phase are characterized by scanning electron microscope(SEM) equipped with an energy dispersive spectromrter(EDS) and X-ray diffractometer(XRD).The influence of supersonic fine particles bombarding technique on the service life of thermal barrier coating is studied.The results show that SFPB technique improves the flaw of excessive surface undulation in the as-sprayed bond coat.A continuous,uniform and single-ingredient(Al2O3) TGO can quickly form in the SFPB TBC during high temperature oxidation process.The thickening of TGO is relatively slow.These will effectively suppress the formation of other non-protective oxides.Therefore,SFPB technique reduces the growth stress level generated by the continuous growth of TGO,and also avoids the stress concentration induced by formation of the large particle spinal oxide.Thermal barrier coating still remains well after 350 thermal cycles.The service life of TBC is improved.The proposed research provides theoretical basis and technical references to further improve and enhance the SFPB technique. 展开更多
关键词 thermal barrier coating stress concentration supersonic fine particles bombarding thermally grown oxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部