The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship...The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM 2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM 2.5 levels in Beijing were very high, the annual average PM 2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM 2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM 2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM 2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM 2.5 and wind speed was not good at stronger wind.展开更多
The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in...The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in the adsorption of particle matter,while the factors,such as the leaf shape,leaf distribution density and leaf surface microstructure,such as grooves,folds,stomata,flocculent projections,micro-roughness,long fuzz,short pubescence,wax and secretory products,appeared to play an important role determing their absorption capacity.In this paper,the research progress on the capture or adsorption of atmospheric particles was summarized,and the forest vegetation and woody plants were discuessed.In addition,special attentions were paid to the effect of haze-fog weather on greenhouse plant,the different responses of plant leaves to dust particles and suspended particles,as well as the effect of suspended particles on morphological change of plants.In the future,research should focus on the mechanism of the influence of particulate matter on plants.More advanced effective and convenient research methods like spectral detection method also need to be developed.This paper may provide reference for future studies on plants’response to haze and particle matter.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollutio...The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.展开更多
Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteoro...Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.展开更多
During November–December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine partic...During November–December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM 2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC),elemental carbon (EC),sulfate,nitrate and ammonium.In average,these five components accounted for about 85% of PM 2.5 mass and contributed 42% (OC),19% (SO 4 2 -),12% (NO 3 -),8.4% (NH 4+) and 3.7% (EC),to PM 2.5 mass.A relatively higher mass scattering efficiency of 5.3 m 2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM 2.5 mass concentrations.Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate,particulate organic matter,ammonium nitrate and EC in average contributed about 32%,28%,20% and 6% to the light extinction coefficients,respectively.展开更多
A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the pr...A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the preheating of secondary air,required for combustion process was also ensured through annulus chamber before being fed into the combustion chamber.The turbulent flow and homogenous mixing were also ensured by controlling the flow rate resulting in the reduced emissions of carbon monoxide(CO)and fine particulate matter(PM 2.5,particulate matter having aerodynamic diameter<2.5 micron).The design approach applied here has also ensured the homogeneous mixing of preheated air with the volatiles,resulted in cleaner combustion.This arrangement has led to the emissions of PM2.5 and CO much better than those of the earlier cookstove models,and very close to that of a liquefied petroleum gas(LPG)stove.Further,the comparative analysis based on the modified star rating of total 15(14 are biomass and another LPG)cookstove models tested using the same standard methodology has been done and presented in this study.Based on the star rating,the performance of the LPG stove was found to be best and assigned as a 5-star product followed by the IITD model(4-star),while the other 13 models got different ratings starting from 1-star to 3-star,respectively.Also,the thermal performance of the IITD cookstove model is found to be the highest,while the emission characteristics are found to be the least among all biomass cookstove models,presented here.展开更多
This study aimed to determine the amount of total polluting matter emitted into the atmosphere from heating and industrial-based emissions and the total pollution bulk of Tokat city center. The annual cycles of some h...This study aimed to determine the amount of total polluting matter emitted into the atmosphere from heating and industrial-based emissions and the total pollution bulk of Tokat city center. The annual cycles of some heavy metal in particulate matters have been investigated at this area in order to elucidate temporal variations as well as major sources processes responsible for their formation. Air particulate samples were collected from three different locations situated around Tokat. These samples were determined for heavy metals by using Flame or graphite-furnace Atomic absorption spectroscopy. Particulate matter concentrations up to 52.43μg/m^3 were observed in sampling area. The initial results of the chemical analysis showed that concentration values of heavy metals in air particles observed were higher than the World Health Organization (WHO) guideline limit values.展开更多
In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><...In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.展开更多
文摘The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM 2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM 2.5 levels in Beijing were very high, the annual average PM 2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM 2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM 2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM 2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM 2.5 and wind speed was not good at stronger wind.
基金This work was funded under the auspices of the National Natural Science Foundation for Young Scientists of China(31801259)the Science and Technology Development Project of Jilin Province(20170204020NY).
文摘The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in the adsorption of particle matter,while the factors,such as the leaf shape,leaf distribution density and leaf surface microstructure,such as grooves,folds,stomata,flocculent projections,micro-roughness,long fuzz,short pubescence,wax and secretory products,appeared to play an important role determing their absorption capacity.In this paper,the research progress on the capture or adsorption of atmospheric particles was summarized,and the forest vegetation and woody plants were discuessed.In addition,special attentions were paid to the effect of haze-fog weather on greenhouse plant,the different responses of plant leaves to dust particles and suspended particles,as well as the effect of suspended particles on morphological change of plants.In the future,research should focus on the mechanism of the influence of particulate matter on plants.More advanced effective and convenient research methods like spectral detection method also need to be developed.This paper may provide reference for future studies on plants’response to haze and particle matter.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
基金Supported by Natural Science Foundation of Shandong Province(Grant No.Z2008E04)"Austria-China"international government cooperation project"Control of Fine Particles"(Nr.CN10/2007)Dr.Foundation of Shandong Jianzhu University(XNBS0920)
文摘The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.
文摘Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.
基金supported by the National Natural Science Foundation of China (No. 40821003,41025012)NSFC-Guangdong Joint Funds (No. U0833003)+1 种基金the Natural Science Foundation of Guangdong (No. 7118013)the Bureau of Science,Technology and Information of Guangzhou (No. 2010U1-E00601-2)
文摘During November–December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM 2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC),elemental carbon (EC),sulfate,nitrate and ammonium.In average,these five components accounted for about 85% of PM 2.5 mass and contributed 42% (OC),19% (SO 4 2 -),12% (NO 3 -),8.4% (NH 4+) and 3.7% (EC),to PM 2.5 mass.A relatively higher mass scattering efficiency of 5.3 m 2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM 2.5 mass concentrations.Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate,particulate organic matter,ammonium nitrate and EC in average contributed about 32%,28%,20% and 6% to the light extinction coefficients,respectively.
基金financial assistance provided by IIT Delhi under new faculty start-up grant for establishing the testing facilities at the laboratory in the Department of Energy Science and Engineering.
文摘A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the preheating of secondary air,required for combustion process was also ensured through annulus chamber before being fed into the combustion chamber.The turbulent flow and homogenous mixing were also ensured by controlling the flow rate resulting in the reduced emissions of carbon monoxide(CO)and fine particulate matter(PM 2.5,particulate matter having aerodynamic diameter<2.5 micron).The design approach applied here has also ensured the homogeneous mixing of preheated air with the volatiles,resulted in cleaner combustion.This arrangement has led to the emissions of PM2.5 and CO much better than those of the earlier cookstove models,and very close to that of a liquefied petroleum gas(LPG)stove.Further,the comparative analysis based on the modified star rating of total 15(14 are biomass and another LPG)cookstove models tested using the same standard methodology has been done and presented in this study.Based on the star rating,the performance of the LPG stove was found to be best and assigned as a 5-star product followed by the IITD model(4-star),while the other 13 models got different ratings starting from 1-star to 3-star,respectively.Also,the thermal performance of the IITD cookstove model is found to be the highest,while the emission characteristics are found to be the least among all biomass cookstove models,presented here.
文摘This study aimed to determine the amount of total polluting matter emitted into the atmosphere from heating and industrial-based emissions and the total pollution bulk of Tokat city center. The annual cycles of some heavy metal in particulate matters have been investigated at this area in order to elucidate temporal variations as well as major sources processes responsible for their formation. Air particulate samples were collected from three different locations situated around Tokat. These samples were determined for heavy metals by using Flame or graphite-furnace Atomic absorption spectroscopy. Particulate matter concentrations up to 52.43μg/m^3 were observed in sampling area. The initial results of the chemical analysis showed that concentration values of heavy metals in air particles observed were higher than the World Health Organization (WHO) guideline limit values.
文摘In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.