The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship...The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM 2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM 2.5 levels in Beijing were very high, the annual average PM 2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM 2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM 2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM 2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM 2.5 and wind speed was not good at stronger wind.展开更多
Objective To investigate the antagonistic effects of different doses of Lianhua Qingwen on pulmonary injury induced by fine particulates PM2.5 in rats. Methods Fine particulates suspended in the environment were colle...Objective To investigate the antagonistic effects of different doses of Lianhua Qingwen on pulmonary injury induced by fine particulates PM2.5 in rats. Methods Fine particulates suspended in the environment were collected. Forty-eight healthy adult wistar rats were randomly divided into 6 groups with 8 rats in each group. Four groups of rats were exposed to PM2.5 by intratracheally dripping suspensions of fine particulates PM2.5(7.5 mg/kg) as dust-exposed model rats. Among them 24 rats in three groups received Lianhua Qingwen treatment(crude drug) at a dose of 2 g/kg, 4 g/kg, 8 g/kg per day for 3 days before dust exposure and were defined as low-dose, middle-dose and high-dose Lianhua Qingwen treatment groups respectively. The other dust-exposed model rats without treatment were assigned as PM2.5 control group. The un-exposed rats were set as saline control group(1.5 ml/kg saline) and blank control group. All rats were killed after 24 hours of the exposure. Lung tissue, serum and bronchoalveolar lavage fluid(BALF) were collected. The levels of malonaldehyde(MDA), lactate dehydrogenase(LDH), and glutathione peroxidase(GSH-PX) in blood serum and BALF, and superoxide dismutase(SOD) in blood surum were measured using fluorescent quantitation PCR; Expression of NF-E2-related factor 2(NRF-2), heme oxygenase 1(HO-1) and quinone oxidoreductase 1(NQO1) in lung tissues were measured using Western blot. Pathological changes of lung tissues in each group were also examined. Results Pathology revealed thickened alveolar septum, congestion of capillary, interstitial edema and infiltration of lymphocyte and neutrophil surrounding bronchiole in the PM2.5 control group, which weresignificantly relieved in the Lianhua Qingwen treatment groups. Compared to the blank and saline control groups, the PM2.5 control group had significantly higher levels of LDH and MDA(p<0.01) and lower level of GSH-PS(p<0.01) in BALF, significantly higher levels of LDH and MDA(p<0.05) and lower level of GSH-PS(p<0.05) in rat serum. The levels of MDA in blood serum and BALF were significantly lower in each treatment group than that in PM2.5 control group(all P<0.05). In both middle-dose and high-dose treatment group the measurements of LDH in serum and BALF as well as GSH-PX in serum were significant difference from those of PM2.5 control group(all P<0.05). Expressions of NRF-2, HO-1 and NQO1 in lung tissues were significantly different among middle-dose and high-dose treatment group compared with those in PM2.5 control group(all P<0.05). Conclusion Fine particulates PM2.5 in environment may induce pulmonary oxidative lesions in rats. Middle-dose and high-dose Lianhua Qingwen has antagonist effece on the injuries induced by fine particulates.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly du...The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly due to insufficient judged measures to reduce road traffic emissions. However, a thorough analysis of the data makes clear that neither the particle mass concentration (PM10 and PM2.5) nor the particle number concentration are specific metrics for evaluating the particle pollution originated by traffic. In fact, increased formation of secondary aerosol, together with adverse meteorological conditions and the (re) suspension of the coarser fraction are by far the three main explanations for the numerous PM10 exceeding values. From our experience, amongst the particles measured, only the results for Black Carbon (BC), mainly present in the lower submicron range, are reflective of the direct influence of local traffic. Measured at two traffic sites along with PM mass and number concentrations, the data for Black Carbon show a striking correlation with nitrogen monoxide, a parameter strongly related with the proximity of the local traffic. The correlation factor between Black Carbon data and NO or NOX is much higher than between Black Carbon and the PM mass or number concentration. Therefore the assessment of traffic related particles should consider Black Carbon rather than PM10 or PM2.5.展开更多
The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollutio...The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.展开更多
Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission ...Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.展开更多
Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteoro...Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.展开更多
文摘The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM 2.5 showed an increasing trend. To understand pollution characteristics of PM 2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM 2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM 2.5 levels in Beijing were very high, the annual average PM 2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM 2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM 2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM 2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM 2.5 and wind speed was not good at stronger wind.
文摘Objective To investigate the antagonistic effects of different doses of Lianhua Qingwen on pulmonary injury induced by fine particulates PM2.5 in rats. Methods Fine particulates suspended in the environment were collected. Forty-eight healthy adult wistar rats were randomly divided into 6 groups with 8 rats in each group. Four groups of rats were exposed to PM2.5 by intratracheally dripping suspensions of fine particulates PM2.5(7.5 mg/kg) as dust-exposed model rats. Among them 24 rats in three groups received Lianhua Qingwen treatment(crude drug) at a dose of 2 g/kg, 4 g/kg, 8 g/kg per day for 3 days before dust exposure and were defined as low-dose, middle-dose and high-dose Lianhua Qingwen treatment groups respectively. The other dust-exposed model rats without treatment were assigned as PM2.5 control group. The un-exposed rats were set as saline control group(1.5 ml/kg saline) and blank control group. All rats were killed after 24 hours of the exposure. Lung tissue, serum and bronchoalveolar lavage fluid(BALF) were collected. The levels of malonaldehyde(MDA), lactate dehydrogenase(LDH), and glutathione peroxidase(GSH-PX) in blood serum and BALF, and superoxide dismutase(SOD) in blood surum were measured using fluorescent quantitation PCR; Expression of NF-E2-related factor 2(NRF-2), heme oxygenase 1(HO-1) and quinone oxidoreductase 1(NQO1) in lung tissues were measured using Western blot. Pathological changes of lung tissues in each group were also examined. Results Pathology revealed thickened alveolar septum, congestion of capillary, interstitial edema and infiltration of lymphocyte and neutrophil surrounding bronchiole in the PM2.5 control group, which weresignificantly relieved in the Lianhua Qingwen treatment groups. Compared to the blank and saline control groups, the PM2.5 control group had significantly higher levels of LDH and MDA(p<0.01) and lower level of GSH-PS(p<0.01) in BALF, significantly higher levels of LDH and MDA(p<0.05) and lower level of GSH-PS(p<0.05) in rat serum. The levels of MDA in blood serum and BALF were significantly lower in each treatment group than that in PM2.5 control group(all P<0.05). In both middle-dose and high-dose treatment group the measurements of LDH in serum and BALF as well as GSH-PX in serum were significant difference from those of PM2.5 control group(all P<0.05). Expressions of NRF-2, HO-1 and NQO1 in lung tissues were significantly different among middle-dose and high-dose treatment group compared with those in PM2.5 control group(all P<0.05). Conclusion Fine particulates PM2.5 in environment may induce pulmonary oxidative lesions in rats. Middle-dose and high-dose Lianhua Qingwen has antagonist effece on the injuries induced by fine particulates.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
文摘The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly due to insufficient judged measures to reduce road traffic emissions. However, a thorough analysis of the data makes clear that neither the particle mass concentration (PM10 and PM2.5) nor the particle number concentration are specific metrics for evaluating the particle pollution originated by traffic. In fact, increased formation of secondary aerosol, together with adverse meteorological conditions and the (re) suspension of the coarser fraction are by far the three main explanations for the numerous PM10 exceeding values. From our experience, amongst the particles measured, only the results for Black Carbon (BC), mainly present in the lower submicron range, are reflective of the direct influence of local traffic. Measured at two traffic sites along with PM mass and number concentrations, the data for Black Carbon show a striking correlation with nitrogen monoxide, a parameter strongly related with the proximity of the local traffic. The correlation factor between Black Carbon data and NO or NOX is much higher than between Black Carbon and the PM mass or number concentration. Therefore the assessment of traffic related particles should consider Black Carbon rather than PM10 or PM2.5.
基金Supported by Natural Science Foundation of Shandong Province(Grant No.Z2008E04)"Austria-China"international government cooperation project"Control of Fine Particles"(Nr.CN10/2007)Dr.Foundation of Shandong Jianzhu University(XNBS0920)
文摘The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.
文摘Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.
文摘Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.