The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformati...The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates,with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the fast cooling regime.At relatively high cooling rates,which corresponded to low heat inputs,the hardness of the simulated HAZ was above that of the base metal.When the cooling rate was below 9C/s,the welding HAZ would have an obvious softening.The analysis of transformation rates in continuous cooling processes was completed by numerical differential method.The result indicated that the microstructure transformation rate of the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s.展开更多
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w...In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.展开更多
In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish ...In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.展开更多
The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M2...The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M23C6, M6C and MC were observed in the annealed steel. Nucleation and coalescence of new carbides, partial dissolution of original carbides in γ phase region during annealing at 800~840℃, result in ultra-fine carbides. Average size of the carbides is0.33~0.34μm in the steel annealed at 800~840℃. Because M3C and M23C6 dissolve easily in austenite, the high hardness HRC63~65 can be obtained by quenching at 840~860℃. Un-dissolved carbides M6C and MC (VC) can effectively prevent the coarsening of austenitic grain, and conduce to obtain very fine martensite. The retained austenite can be easy to decompose during tempering at low and middle temperature due to the precipitation of multiple types of carbides and the good tempering-resistance of the steel is obtained. The microstructure and property of the steel after heat treatment can be accurately explained by calculating based on phase equilibrium thermodynamic.Key Words: 8CrWMoV steel, ultra-fine carbide, heat treatment, microstructure,展开更多
Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel sl...Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.展开更多
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than...The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.展开更多
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ...Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.展开更多
The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal...The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal and its weld HAZ (heat affected zone) defined by the gross yielding criterium have been determined directly by means of wide plate tests. It has been shown that although the HAZ grain growth occurs due to the welding heat, the resistance to fracture is not deteriorated. The deformation behavior of wide plate specimen was also studied by finite, element (FE) analysis. The deformation of weld HAZ is protected by the high strength weld metal, so it is easier to get the general yielding for the welded joint specimen.展开更多
The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetic...The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.展开更多
The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the ...The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.展开更多
Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemi...Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased.展开更多
The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties wer...The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties were studied when the aggregate was applied to concrete. The: result shows that the aggregate has special advantages of hardness and wear-resistance, so it can be used as an excellent road surface material. The concrete mixed with the steel slag special fine aggregate exhibits good mechanical properties and working properties,which is safe and reliable.展开更多
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s...Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.展开更多
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel...The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).展开更多
The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain...The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain size,the quantity,and the character of distribution of nonmetallic inclusions in the railroad frogs.The microstructure of castings was improved significantly because of the refinement of the grain structure and an increase of the grain-boundary area.After the modifying mixture was introduced into the melt,either the microtwins of one or two intersecting systems or the precipitations of ε-martensite of different types,or simultaneously the microtwins and wafers of ε-martensite,were present in each grain.展开更多
X-ray diffraction profiles of various deformed steel 1Cr18Ni9 through stepped scanning were obtained.By profile analysis,some structure parameters such as effective domain size D_(eff), dislocation density in domain,d...X-ray diffraction profiles of various deformed steel 1Cr18Ni9 through stepped scanning were obtained.By profile analysis,some structure parameters such as effective domain size D_(eff), dislocation density in domain,distribution parameterand bulk stored energy densiy (E/V),etc.,were obtained.The results were compared with those of TEM observation.The true domain sizes D_e are comparable,but the minimum and characteristics of width of stack- ing fault are different.This may be resulted from the large fluctuation in width of stacking fault.展开更多
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental...To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.展开更多
Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600°C. The result...Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600°C. The results show that titanium decreases the surface tension of the molten IF steel and the contact angle. The interfacial tension between the molten IF steel containing Ti and solid alumina decreases with increase in titanium content. The work of adhesion between molten IF steel containing Ti and solid alumina decreases slightly at 1550°C, but increases at 1600°C with increasing titanium content. It can be deduced that fine bubbles and fine alumina inclusions are easily entrapped in solidifying interface for IF steel containing Ti.展开更多
The microstructure of 40Cr steel sample and its surface is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the superplasticity is studied under isothermal superplastic compressive def...The microstructure of 40Cr steel sample and its surface is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the superplasticity is studied under isothermal superplastic compressive deformation condition. The experimental results indicate that the stress-strain curves are shown to take place obvious superplastic flow characteristic at the temperature of 750-770℃ and at the initial strain rate of (1.7-5.0)×10-4 s-1. Its strain rate sensitivity is 0.30-0.38, the steady superplastic flow stress is 60-70MPa, the superplastic flow activation energy is 198-217kJ/mol, and it is close to α-Fe grain boundary self-diffusion activation energy. The super-plastic compressive constitute equations of this steel are correspondingly set up. Due to the finer microstructure of high frequency hardening, it appears bigger strain rate sensitivity value, smaller the steady superplastic flow stress and the superplastic flow activation energy, so it has better superplastic deformation capability.展开更多
In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat inpu...In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat input welding is discussed.The important countermeasure for improving the HAZ toughness is to employ the technology of oxide metallurgy ,namely,to make use of fine inclusion particles for improving the microstructure of HAZ. The progress and theories of oxide metallurgy technologies developed in the Nippon Steel Corporation ( NSC), the JFE Steel Corporation and the Kobe Steel Group are illustrated. Steel plates developed by these three companies with excellent HAZ toughness are introduced.展开更多
文摘The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates,with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the fast cooling regime.At relatively high cooling rates,which corresponded to low heat inputs,the hardness of the simulated HAZ was above that of the base metal.When the cooling rate was below 9C/s,the welding HAZ would have an obvious softening.The analysis of transformation rates in continuous cooling processes was completed by numerical differential method.The result indicated that the microstructure transformation rate of the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s.
文摘In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.
文摘In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.
文摘The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M23C6, M6C and MC were observed in the annealed steel. Nucleation and coalescence of new carbides, partial dissolution of original carbides in γ phase region during annealing at 800~840℃, result in ultra-fine carbides. Average size of the carbides is0.33~0.34μm in the steel annealed at 800~840℃. Because M3C and M23C6 dissolve easily in austenite, the high hardness HRC63~65 can be obtained by quenching at 840~860℃. Un-dissolved carbides M6C and MC (VC) can effectively prevent the coarsening of austenitic grain, and conduce to obtain very fine martensite. The retained austenite can be easy to decompose during tempering at low and middle temperature due to the precipitation of multiple types of carbides and the good tempering-resistance of the steel is obtained. The microstructure and property of the steel after heat treatment can be accurately explained by calculating based on phase equilibrium thermodynamic.Key Words: 8CrWMoV steel, ultra-fine carbide, heat treatment, microstructure,
基金the National Natural Science Foundation of China (No.50678139)
文摘Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.
文摘The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.
文摘Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.
基金Supported by FOK YING TUNG Education Foundation and the National Natural Science Foundation of China (Grant No.50275107).
文摘The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal and its weld HAZ (heat affected zone) defined by the gross yielding criterium have been determined directly by means of wide plate tests. It has been shown that although the HAZ grain growth occurs due to the welding heat, the resistance to fracture is not deteriorated. The deformation behavior of wide plate specimen was also studied by finite, element (FE) analysis. The deformation of weld HAZ is protected by the high strength weld metal, so it is easier to get the general yielding for the welded joint specimen.
文摘The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.
文摘The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.
文摘Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased.
文摘The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties were studied when the aggregate was applied to concrete. The: result shows that the aggregate has special advantages of hardness and wear-resistance, so it can be used as an excellent road surface material. The concrete mixed with the steel slag special fine aggregate exhibits good mechanical properties and working properties,which is safe and reliable.
基金supported by the National Natural Science Foundation of China(No.50527402)
文摘Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.
文摘The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).
基金partly supported by the Russian Foundation for basic Researches(No.16-48-700198)the Tomsk State University competitiveness improvement programme
文摘The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain size,the quantity,and the character of distribution of nonmetallic inclusions in the railroad frogs.The microstructure of castings was improved significantly because of the refinement of the grain structure and an increase of the grain-boundary area.After the modifying mixture was introduced into the melt,either the microtwins of one or two intersecting systems or the precipitations of ε-martensite of different types,or simultaneously the microtwins and wafers of ε-martensite,were present in each grain.
文摘X-ray diffraction profiles of various deformed steel 1Cr18Ni9 through stepped scanning were obtained.By profile analysis,some structure parameters such as effective domain size D_(eff), dislocation density in domain,distribution parameterand bulk stored energy densiy (E/V),etc.,were obtained.The results were compared with those of TEM observation.The true domain sizes D_e are comparable,but the minimum and characteristics of width of stack- ing fault are different.This may be resulted from the large fluctuation in width of stacking fault.
基金Funded by the Guide Project in National Science & Technology Pillar Program during the 10th Five-Year Plan Period (2003BA652C)
文摘To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.
文摘Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600°C. The results show that titanium decreases the surface tension of the molten IF steel and the contact angle. The interfacial tension between the molten IF steel containing Ti and solid alumina decreases with increase in titanium content. The work of adhesion between molten IF steel containing Ti and solid alumina decreases slightly at 1550°C, but increases at 1600°C with increasing titanium content. It can be deduced that fine bubbles and fine alumina inclusions are easily entrapped in solidifying interface for IF steel containing Ti.
基金supported by State Key Laboratory of New Nonferrous Metal Materials Natural Science Foundation of He'nan Province,China(No.984040900)Natural Science Foundation of the Education Department of He'nan Province,China(No.2003430211).
文摘The microstructure of 40Cr steel sample and its surface is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the superplasticity is studied under isothermal superplastic compressive deformation condition. The experimental results indicate that the stress-strain curves are shown to take place obvious superplastic flow characteristic at the temperature of 750-770℃ and at the initial strain rate of (1.7-5.0)×10-4 s-1. Its strain rate sensitivity is 0.30-0.38, the steady superplastic flow stress is 60-70MPa, the superplastic flow activation energy is 198-217kJ/mol, and it is close to α-Fe grain boundary self-diffusion activation energy. The super-plastic compressive constitute equations of this steel are correspondingly set up. Due to the finer microstructure of high frequency hardening, it appears bigger strain rate sensitivity value, smaller the steady superplastic flow stress and the superplastic flow activation energy, so it has better superplastic deformation capability.
文摘In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat input welding is discussed.The important countermeasure for improving the HAZ toughness is to employ the technology of oxide metallurgy ,namely,to make use of fine inclusion particles for improving the microstructure of HAZ. The progress and theories of oxide metallurgy technologies developed in the Nippon Steel Corporation ( NSC), the JFE Steel Corporation and the Kobe Steel Group are illustrated. Steel plates developed by these three companies with excellent HAZ toughness are introduced.