The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollutio...The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.展开更多
In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><...In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.展开更多
基金Supported by Natural Science Foundation of Shandong Province(Grant No.Z2008E04)"Austria-China"international government cooperation project"Control of Fine Particles"(Nr.CN10/2007)Dr.Foundation of Shandong Jianzhu University(XNBS0920)
文摘The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.
文摘In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.