In this work, pre-strain annealing strengthening(PSAS) effect was investigated in an extruded Mg-1.0Gd-1.5 Zn(wt.%) alloy with respect to different grain sizes. The evolution of microstructures was provided by scannin...In this work, pre-strain annealing strengthening(PSAS) effect was investigated in an extruded Mg-1.0Gd-1.5 Zn(wt.%) alloy with respect to different grain sizes. The evolution of microstructures was provided by scanning electron microscopy(SEM), electron backscattered diffraction(EBSD), transmission electron microscopy(TEM) and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM) under the initial state, pre-compression, intermediate annealing and re-compression conditions. The obtained results showed a grain size-dependent PSAS effect in the alloy. The sample with larger grain sizes corresponded to a higher strengthening effect, which mainly resulted from a more remarkable hindrance for the growth of existing twins and a larger proportion of activation for the nucleation of new twins. This was closely associated with the increase of back stress and friction stress for twin boundary motion impeded by the larger restraint of dislocations, the higher stress field surrounding solutes and the more Zn segregation. In addition to twinning behavior, Guinier Preston(G.P.) zones on basaldislocations were found after intermediate annealing and provided an extra strengthening by inhibiting the motions of gilding pre-existing dislocations and newly formed ones, but it was independent on the grain size.展开更多
We investigate the segregation behavior of alloying atoms (Sr, Th, In, Cd, Ag, Sc, Au, Zn, Cu, Mn, Cr, and Ti) near Z3 ( 111 ) [1]-0] tilt symmetric grain boundary (GB) in tungsten and their effects on the inter...We investigate the segregation behavior of alloying atoms (Sr, Th, In, Cd, Ag, Sc, Au, Zn, Cu, Mn, Cr, and Ti) near Z3 ( 111 ) [1]-0] tilt symmetric grain boundary (GB) in tungsten and their effects on the intergranular embrittlement by performing first-principles calculations. The calculated segregation energies suggest that Ag, Au, Cd, In, Sc, Sr, Th, and Ti prefer to occupy the site in the mirror plane of the GB, while Cu, Cr, Mn, and Zn intend to locate at the first layer nearby the GB core. The calculated strengthening energies predict Sr, Th, In, Cd, Ag, Sc, Au, Ti, and Zn act as embrittlers while Cu, Cr, and Mn act as cohesion enhancers. The correlation of the alloying atom's metal radius with strengthening energy is strong enough to predict the strengthening and embrittling behavior of alloying atoms; that is, the alloying atom with larger metal radius than W acts as an embrittler and the one with smaller metal radius acts as a cohesion enhancer.展开更多
Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.Th...Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.The experimental results showed that the compressive yield strength(CYS)of the sample containing prismatic plates increased 40 MPa and the compression ratio raised by 22%compared to that containing basal plates.The underlying strengthening mechanism was analyzed via a yield strengthen(YS)model with a function of grain size,precipitate characters(size,oritention,fraction)and Schmid factor(SF).It revealed that the improvement of CYS was mainly attributed to the altered precipitate orientation and refined grain size produced by twinning deformation.Particularly,the prismatic plates always have a stronger hardening effect on basal slip than basal plates under the same varites of precipitate diameter and SF.Besides,the decreased CRSS ratio of prismatic slip to basal slip revealed that the activity of non-basal slip in Mg alloy might be enhanced.More activated slip systems provided more mobile dislocations,contributing to the large compression ratio of the Mg rolled sheet with prismatic plates.展开更多
Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit...Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.展开更多
The influence of aging temperature and time on fracture feature of monotonic tensile samples of alumi-num-Iithium alloy 2090+Ce was investigated.The effects and mechanisms of extrinsic strengthening during aging for t...The influence of aging temperature and time on fracture feature of monotonic tensile samples of alumi-num-Iithium alloy 2090+Ce was investigated.The effects and mechanisms of extrinsic strengthening during aging for this alloy with a flat unrecrystallized structure were discussed.The mechanisms were analysed from four aspects.The theory of extrinsic strengthening from the delamination strengthening was presented.The results in this research show that the strength and ductility of aluminum-lithium alloy with a flat unrecrystallized structure are superior to those with recrystallized structure.Several reasons have been advanced for the ductility improvement effect of flat uncrystallized structure,including wedging action between flat grain,action of short-transverse delamination on impeding the growth of main crack,action on the reduction in the detrimental influence of weak grain boundaries and action on impeding the intergranular fracture on main fracture surface.The strengthening effect of flat uncrystallized structure is attributed to the extrinsic strengthening derived from delamination strengthening.From underage to peakage,the fracture mode of this alloy is transgranular fracture plus short-transverse delamination.The tendency of short-transverse delamination in creases with aging,thereby enhancing the delamination strengtheniag effect.Under overaging condition,the fracture mode is predominately intersubgranular,which results in the loss of delamination strengthening.展开更多
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively...This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.展开更多
Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the ...Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the reductions with carbon black and hydrogen in sequence.It is concluded that the solution concentration and type of rare earth oxide have no effect on the grain size of ODS-Mo alloy powder,but have obvious effect on that of ODS-W alloy powder.The higher the concentration of rare earth solution is,the smaller the average grain size of ODS-W alloy powder is.Furthermore,compared with doping with CeO_(2),the grain sizes of reduction products of La_(2)O_(3) and Y_(2)O_(3) doped WO_(3) are relatively larger.Compared with the undoped case,there is almost no change for grain size of ODS-Mo alloy powder,while the grain size of ODS-W alloy powder becomes much larger.This is probably due to the appearance of the composite oxide(such as La_(2)WO_(6))formed by the reaction between tungsten oxide and rare earth oxides,which promotes the heterogeneous nucleation and growth of tungsten grains during the reduction process of ODS-W,while there is no complex oxide composed of molybdenum and rare earth oxides in the reduction process of ODS-Mo.展开更多
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric...The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .展开更多
Sintered Nd-Ce-Fe-B magnets were grain boundary diffused(GBDed) with Pr_(x)Tb_(80-x)Al_(10)Ga_(10)(at%)(x=0,20,40,60,80) alloys.The effect of Pr/Tb content in diffusion source on magnetic properties,microstructure and...Sintered Nd-Ce-Fe-B magnets were grain boundary diffused(GBDed) with Pr_(x)Tb_(80-x)Al_(10)Ga_(10)(at%)(x=0,20,40,60,80) alloys.The effect of Pr/Tb content in diffusion source on magnetic properties,microstructure and elements distribution of GBDed magnets was investigated.When Pr is used to substitute for 75% Tb in diffusion source,Tb consumption per unit coercivity improvement of GBDed magnet reduces by 77%,compared with the Tb_(80)Al_(10)Ga_(10) diffused magnet.Tb element diffuses into magnets and then forms Tb-rich shell with high magneto-crystalline anisotropy field surrounding main phase grains,resulting in substantial coercivity improvement.Pr with low melting point diffuses deeply along liquid grain boundary phase during GBD process.It can eliminate some sharp defects of main phase grains and make grain boundaries smooth,which provides diffusion channels for further diffusion of Tb element.Therefore,there are more diffusion channels for Tb and less Tb enriched at surface region,making Tb diffuse more deeply and improving Tb utilization efficiency.This method significantly improves the coercivity,and realizes the green,efficient and high-quality utilization of heavy rare earth(HRE)elements.展开更多
A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening...A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.展开更多
Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nano-crystalline powders using spark plasma sintering.The present study mainly discussed the effects of sintering temperature on the den...Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nano-crystalline powders using spark plasma sintering.The present study mainly discussed the effects of sintering temperature on the density,microstructure and mechanical properties of the alloys.The relative density of 98.12% was obtained at 1 050 ℃,and the tungsten grain size is about 871 nm.At 1 000 ℃-1 200 ℃,the mechanical properties of the alloys tend to first rise and then goes down.After SPS,the alloy exhibits improved hardness (84.3 HRA at 1 050 ℃) and bending strength (987.16 MPa at 1 100 ℃),due to the ultrafine-grained microstructure.The fracture mode after bending tests is mainly characterized as intergranular or intragranular fracture of W grains,interfacial debonding of W grains-binding phase and ductile tearing of binding phase.The EDS analysis reveals a certain proportion of solid solution between W and Ni-Fe binding phase.The good mechanical properties of the alloys can be attributed to grain refinement and solid solution strengthening.展开更多
The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and...The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and Zr can remarkably reduce the grain sizes of Al-Mg-Mn castings. Combination of Sc,Zr and Er can completely eliminate the columnar dendritic grains and further obtain refined grains with nondendritic sub-structure;the whole wedge-shaped cross-section of the casting consequently exhibits more homogeneous cast structures instead of the typical tri-crystal region structures. Large amounts of Al3Sc-based intermetallic compound particles,such as Al3(Sc1-x,Zrx),Al3(Sc1-x,Tix),Al3(Sc1-x-y,Zrx,Tiy) and Al3(Sc1-x-y,Zrx,Ery) are present in the microalloyed alloys,resulting from their numerously forming in high-temperature melt before solidification. These phases have the same L12-type crystal structure to Al3Sc phase as well as smaller misfits with the primary α(Al) grains,which leads to more efficient epitaxial growth for α(Al) grains on all crystal planes of these composite phases. The experimental alloys have been hardened in different levels and,show the low susceptibilities of hardness change with varying cooling rate. The high hardness of the castings are caused by grain-refined strengthening and solid solution strengthening.展开更多
Low absolute strength becomes one major obstacle for the wider applications of low/no rare-earth(RE) containing Mg alloys. This review firstly demonstrates the importance of grain refinement in improving strength of M...Low absolute strength becomes one major obstacle for the wider applications of low/no rare-earth(RE) containing Mg alloys. This review firstly demonstrates the importance of grain refinement in improving strength of Mg alloys by comprehensively comparing with other strategy, e.g., precipitation strengthening. Dynamic recrystallization(DRX) plays a crucial role in refining grain size of Mg wrought alloys.Therefore, secondly, the DRX models, grain nucleation mechanisms and the related grain refinement abilities in Mg alloys are summarized,including phase boundary, twin boundary and general boundary induced recrystallization. Thirdly, the newly developed low-RE containing Mg alloy, e.g., Mg-Ce, Mg-Nd and Mg-Sm based alloys, and the RE-free Mg alloys, e.g., Mg-Al, Mg-Zn, Mg-Sn and Mg-Ca based alloy,are reviewed, with the focus on enhancing the mechanical properties mainly via the grain refinement strategy. At the last section, the perspectives and outstanding issues concerning high-performance Mg wrought alloys are also proposed. This review is meant to promote the deep understanding on the critical role of grain refinement in Mg alloys and provide reference for the development of other high strength and low-cost Mg alloys which are fabricated by the conventional extrusion/rolling processing.展开更多
Grain boundaries(GBs)can serve as effective sinks for radiation-induced defects,thus notably influencing the service performance of materials.However,the effect of GB structures on the zero-dimensional defects induced...Grain boundaries(GBs)can serve as effective sinks for radiation-induced defects,thus notably influencing the service performance of materials.However,the effect of GB structures on the zero-dimensional defects induced by irradiation has not been fully elucidated.Here,the evolution of cascade collision in the single-crystal(SC),bicrystalline(BC),and twinned crystalline(TC)copper is studied by atomic simulations during irradiation.The spatial distributions of vacancies and interstitials are closely related to the GB at a certain primary knock-on atom(PKA)energy.Compared with the TC,the BC displays a more obvious segregation of the interstitial atoms near GB,due to the characteristic of the greater interstitial binding energy.The evolution of Frenkel pairs is more sensitive to the change of the GB position in the BC.A more prominent defect annihilation rate is caused by the effect of the GB than that of the twin boundary(TB).The marked secondary emission phenomenon has been observed in the BC,which promotes the formation of an inverted pagoda-like defect distribution.There are similar sub-conical defect distributions and microstructures induced by cascade collision in the TC and the SC.It has been found that the influence range of the GB is wider in the BC.Meanwhile,the average flow stress of the irradiated copper is quantitatively calculated by establishing a physical strengthening model.The contribution of vacancy to the average flow stress in the irradiated BC and TC is obvious than that in the SC,due to the formation of many vacancies.This study provides a theoretical basis for further understanding and customization of the metal-based equipment with good radiation resistance.展开更多
基金the financial supports from National Natural Science Foundation of China (U1764253)National Natural Science Foundation of China (51901202) and National Natural Science Foundation of China (51901204)。
文摘In this work, pre-strain annealing strengthening(PSAS) effect was investigated in an extruded Mg-1.0Gd-1.5 Zn(wt.%) alloy with respect to different grain sizes. The evolution of microstructures was provided by scanning electron microscopy(SEM), electron backscattered diffraction(EBSD), transmission electron microscopy(TEM) and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM) under the initial state, pre-compression, intermediate annealing and re-compression conditions. The obtained results showed a grain size-dependent PSAS effect in the alloy. The sample with larger grain sizes corresponded to a higher strengthening effect, which mainly resulted from a more remarkable hindrance for the growth of existing twins and a larger proportion of activation for the nucleation of new twins. This was closely associated with the increase of back stress and friction stress for twin boundary motion impeded by the larger restraint of dislocations, the higher stress field surrounding solutes and the more Zn segregation. In addition to twinning behavior, Guinier Preston(G.P.) zones on basaldislocations were found after intermediate annealing and provided an extra strengthening by inhibiting the motions of gilding pre-existing dislocations and newly formed ones, but it was independent on the grain size.
基金Project supported by the National Magnetic Confinement Fusion Program(Grant No.2011GB108004)the National Natural Science Foundation of China(Grant Nos.91026002 and 91126002)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.KJCX2-YW-N35 andXDA03010303)the Center for Computation Science,Hefei Institutes of Physical Sciences
文摘We investigate the segregation behavior of alloying atoms (Sr, Th, In, Cd, Ag, Sc, Au, Zn, Cu, Mn, Cr, and Ti) near Z3 ( 111 ) [1]-0] tilt symmetric grain boundary (GB) in tungsten and their effects on the intergranular embrittlement by performing first-principles calculations. The calculated segregation energies suggest that Ag, Au, Cd, In, Sc, Sr, Th, and Ti prefer to occupy the site in the mirror plane of the GB, while Cu, Cr, Mn, and Zn intend to locate at the first layer nearby the GB core. The calculated strengthening energies predict Sr, Th, In, Cd, Ag, Sc, Au, Ti, and Zn act as embrittlers while Cu, Cr, and Mn act as cohesion enhancers. The correlation of the alloying atom's metal radius with strengthening energy is strong enough to predict the strengthening and embrittling behavior of alloying atoms; that is, the alloying atom with larger metal radius than W acts as an embrittler and the one with smaller metal radius acts as a cohesion enhancer.
基金the Fundamental Research Funds for the Project of Science&Technology Department of Sichuan Province(2018HH0026)National Natural Science Foundation of China(51701132,U1764253)China Scholarship Council(201907005018)。
文摘Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.The experimental results showed that the compressive yield strength(CYS)of the sample containing prismatic plates increased 40 MPa and the compression ratio raised by 22%compared to that containing basal plates.The underlying strengthening mechanism was analyzed via a yield strengthen(YS)model with a function of grain size,precipitate characters(size,oritention,fraction)and Schmid factor(SF).It revealed that the improvement of CYS was mainly attributed to the altered precipitate orientation and refined grain size produced by twinning deformation.Particularly,the prismatic plates always have a stronger hardening effect on basal slip than basal plates under the same varites of precipitate diameter and SF.Besides,the decreased CRSS ratio of prismatic slip to basal slip revealed that the activity of non-basal slip in Mg alloy might be enhanced.More activated slip systems provided more mobile dislocations,contributing to the large compression ratio of the Mg rolled sheet with prismatic plates.
基金the Department of Science & Technology (DST) for their financial support for carrying out this research through Fast Track Scheme (DST Sanction No: SR/FT/ET-005/2008)Technical Education Quality Improvement Programme (TEQIP)
文摘Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.
文摘The influence of aging temperature and time on fracture feature of monotonic tensile samples of alumi-num-Iithium alloy 2090+Ce was investigated.The effects and mechanisms of extrinsic strengthening during aging for this alloy with a flat unrecrystallized structure were discussed.The mechanisms were analysed from four aspects.The theory of extrinsic strengthening from the delamination strengthening was presented.The results in this research show that the strength and ductility of aluminum-lithium alloy with a flat unrecrystallized structure are superior to those with recrystallized structure.Several reasons have been advanced for the ductility improvement effect of flat uncrystallized structure,including wedging action between flat grain,action of short-transverse delamination on impeding the growth of main crack,action on the reduction in the detrimental influence of weak grain boundaries and action on impeding the intergranular fracture on main fracture surface.The strengthening effect of flat uncrystallized structure is attributed to the extrinsic strengthening derived from delamination strengthening.From underage to peakage,the fracture mode of this alloy is transgranular fracture plus short-transverse delamination.The tendency of short-transverse delamination in creases with aging,thereby enhancing the delamination strengtheniag effect.Under overaging condition,the fracture mode is predominately intersubgranular,which results in the loss of delamination strengthening.
基金the National Key Research and Development Program of China(No.2016YFB 0300600)the National Natural Science Foundation of China(NSFC)(No.51922026)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.N2002013,N2002005,N2007011)the 111 Project(No.B20029).
文摘This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.
基金financial support from the National Natural Science Foundation of China (No.51734002)。
文摘Ultrafine oxide dispersion strengthening(ODS)-Mo and ODS-W alloy powders containing different types of oxide nanoparticles were successfully synthesized by spraying method(solid−liquid mixing method)combined with the reductions with carbon black and hydrogen in sequence.It is concluded that the solution concentration and type of rare earth oxide have no effect on the grain size of ODS-Mo alloy powder,but have obvious effect on that of ODS-W alloy powder.The higher the concentration of rare earth solution is,the smaller the average grain size of ODS-W alloy powder is.Furthermore,compared with doping with CeO_(2),the grain sizes of reduction products of La_(2)O_(3) and Y_(2)O_(3) doped WO_(3) are relatively larger.Compared with the undoped case,there is almost no change for grain size of ODS-Mo alloy powder,while the grain size of ODS-W alloy powder becomes much larger.This is probably due to the appearance of the composite oxide(such as La_(2)WO_(6))formed by the reaction between tungsten oxide and rare earth oxides,which promotes the heterogeneous nucleation and growth of tungsten grains during the reduction process of ODS-W,while there is no complex oxide composed of molybdenum and rare earth oxides in the reduction process of ODS-Mo.
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
文摘The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .
基金Project supported by the National Key Research and Development Program of China (2022YFB3503303)。
文摘Sintered Nd-Ce-Fe-B magnets were grain boundary diffused(GBDed) with Pr_(x)Tb_(80-x)Al_(10)Ga_(10)(at%)(x=0,20,40,60,80) alloys.The effect of Pr/Tb content in diffusion source on magnetic properties,microstructure and elements distribution of GBDed magnets was investigated.When Pr is used to substitute for 75% Tb in diffusion source,Tb consumption per unit coercivity improvement of GBDed magnet reduces by 77%,compared with the Tb_(80)Al_(10)Ga_(10) diffused magnet.Tb element diffuses into magnets and then forms Tb-rich shell with high magneto-crystalline anisotropy field surrounding main phase grains,resulting in substantial coercivity improvement.Pr with low melting point diffuses deeply along liquid grain boundary phase during GBD process.It can eliminate some sharp defects of main phase grains and make grain boundaries smooth,which provides diffusion channels for further diffusion of Tb element.Therefore,there are more diffusion channels for Tb and less Tb enriched at surface region,making Tb diffuse more deeply and improving Tb utilization efficiency.This method significantly improves the coercivity,and realizes the green,efficient and high-quality utilization of heavy rare earth(HRE)elements.
基金the National Natural Science Foundation of China for the financial support by the grant 50171018 and 59771015, and Education Ministry of China for an outstanding teacher research fund to this study. Some student work
文摘A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.
基金the National Key Research and Development Plan of China(2017YFB0310400)the National Natural Science Foundation of China(Nos.5167020705 and 51902233)the Self-determined and Innovative Research Funds of WHUT(2019III059XZ)。
文摘Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nano-crystalline powders using spark plasma sintering.The present study mainly discussed the effects of sintering temperature on the density,microstructure and mechanical properties of the alloys.The relative density of 98.12% was obtained at 1 050 ℃,and the tungsten grain size is about 871 nm.At 1 000 ℃-1 200 ℃,the mechanical properties of the alloys tend to first rise and then goes down.After SPS,the alloy exhibits improved hardness (84.3 HRA at 1 050 ℃) and bending strength (987.16 MPa at 1 100 ℃),due to the ultrafine-grained microstructure.The fracture mode after bending tests is mainly characterized as intergranular or intragranular fracture of W grains,interfacial debonding of W grains-binding phase and ductile tearing of binding phase.The EDS analysis reveals a certain proportion of solid solution between W and Ni-Fe binding phase.The good mechanical properties of the alloys can be attributed to grain refinement and solid solution strengthening.
文摘The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and Zr can remarkably reduce the grain sizes of Al-Mg-Mn castings. Combination of Sc,Zr and Er can completely eliminate the columnar dendritic grains and further obtain refined grains with nondendritic sub-structure;the whole wedge-shaped cross-section of the casting consequently exhibits more homogeneous cast structures instead of the typical tri-crystal region structures. Large amounts of Al3Sc-based intermetallic compound particles,such as Al3(Sc1-x,Zrx),Al3(Sc1-x,Tix),Al3(Sc1-x-y,Zrx,Tiy) and Al3(Sc1-x-y,Zrx,Ery) are present in the microalloyed alloys,resulting from their numerously forming in high-temperature melt before solidification. These phases have the same L12-type crystal structure to Al3Sc phase as well as smaller misfits with the primary α(Al) grains,which leads to more efficient epitaxial growth for α(Al) grains on all crystal planes of these composite phases. The experimental alloys have been hardened in different levels and,show the low susceptibilities of hardness change with varying cooling rate. The high hardness of the castings are caused by grain-refined strengthening and solid solution strengthening.
基金supported by National Key Research and Development Program of China (No.2023YFB3710900)National Natural Science Foundation of China (Nos.U2241235,U2167213,51971053)+2 种基金funded by the Project of Promoting Talents in Liaoning province (No.XLYC2203202)the financial assistance from Young Elite Scientists Sponsorship Program by CAST (2019-2021QNRC001,2019-2021QNRC002,2019-2021QNRC003)the fund from the Fundamental Research Funds for the Central Universities (N2202020)。
文摘Low absolute strength becomes one major obstacle for the wider applications of low/no rare-earth(RE) containing Mg alloys. This review firstly demonstrates the importance of grain refinement in improving strength of Mg alloys by comprehensively comparing with other strategy, e.g., precipitation strengthening. Dynamic recrystallization(DRX) plays a crucial role in refining grain size of Mg wrought alloys.Therefore, secondly, the DRX models, grain nucleation mechanisms and the related grain refinement abilities in Mg alloys are summarized,including phase boundary, twin boundary and general boundary induced recrystallization. Thirdly, the newly developed low-RE containing Mg alloy, e.g., Mg-Ce, Mg-Nd and Mg-Sm based alloys, and the RE-free Mg alloys, e.g., Mg-Al, Mg-Zn, Mg-Sn and Mg-Ca based alloy,are reviewed, with the focus on enhancing the mechanical properties mainly via the grain refinement strategy. At the last section, the perspectives and outstanding issues concerning high-performance Mg wrought alloys are also proposed. This review is meant to promote the deep understanding on the critical role of grain refinement in Mg alloys and provide reference for the development of other high strength and low-cost Mg alloys which are fabricated by the conventional extrusion/rolling processing.
基金Project supported by the National Natural Science Foundation of China(Nos.51871092 and 11772122)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621004)。
文摘Grain boundaries(GBs)can serve as effective sinks for radiation-induced defects,thus notably influencing the service performance of materials.However,the effect of GB structures on the zero-dimensional defects induced by irradiation has not been fully elucidated.Here,the evolution of cascade collision in the single-crystal(SC),bicrystalline(BC),and twinned crystalline(TC)copper is studied by atomic simulations during irradiation.The spatial distributions of vacancies and interstitials are closely related to the GB at a certain primary knock-on atom(PKA)energy.Compared with the TC,the BC displays a more obvious segregation of the interstitial atoms near GB,due to the characteristic of the greater interstitial binding energy.The evolution of Frenkel pairs is more sensitive to the change of the GB position in the BC.A more prominent defect annihilation rate is caused by the effect of the GB than that of the twin boundary(TB).The marked secondary emission phenomenon has been observed in the BC,which promotes the formation of an inverted pagoda-like defect distribution.There are similar sub-conical defect distributions and microstructures induced by cascade collision in the TC and the SC.It has been found that the influence range of the GB is wider in the BC.Meanwhile,the average flow stress of the irradiated copper is quantitatively calculated by establishing a physical strengthening model.The contribution of vacancy to the average flow stress in the irradiated BC and TC is obvious than that in the SC,due to the formation of many vacancies.This study provides a theoretical basis for further understanding and customization of the metal-based equipment with good radiation resistance.
基金the National Natural Science Foundation of China (Nos. 52071179, 5227010325)the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Fundamental Research Funds for the Central Universities, China (Nos. 30920021160, 30919011405)。