The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi...Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.展开更多
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha...Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.展开更多
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi...The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.展开更多
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affe...In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affects this strength,we conducted direct shear tests under various conditions such as different fine-grained soil content,normal stress,and initial moisture content of the soil.By analyzing parameters like soil properties,and volume of ice content,and using the Mohr-Coulomb strength theory to define interface strength,we aimed to indirectly measure the cementation strength of the interface.Our findings revealed that as the particle content increased,the interface stress-strain curves became noticeably stiffer.We also observed a positive linear relationship between freezing strength and silt content,while the initial moisture content of the soil did not significantly impact the strengthening effect of fine-grained soil on freezing strength.Moreover,we discovered that as the powder content increased,the force binding the ice to the interface decreased,while the friction angle at the interface increased.However,the cohesion force at the interface remained relatively unchanged.Overall,our analysis suggests that the increase in freezing strength due to fine-grained soil content is primarily due to the heightened friction between aeolian sand and the interface.展开更多
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, ...A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.展开更多
In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay functi...In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.展开更多
Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase c...Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.展开更多
For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the hi...For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.展开更多
Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand...Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.展开更多
High-resolution seismic profiles and surface samples were studied in detail in order to determine the structures, provenance, and dynamic mechanisms of a fine-grained deposit in the southeast coastal area of the Liaod...High-resolution seismic profiles and surface samples were studied in detail in order to determine the structures, provenance, and dynamic mechanisms of a fine-grained deposit in the southeast coastal area of the Liaodong Peninsula, China. Results indicate that there is a prominent fine-grained deposit distributed alongshore up to 14 m thick, which thins out to less than 2 m in both seaward and landward directions, forming an fl-shaped pattern of cross-section. The deposit is 180-300 km away from the Yalu River mouth and extends along the southeast coast of the Liaodong Peninsula between the northeast of Dalian Bay and southwest of the Changshan Islands, in water depths of 20-40 m. The deposit, which is mainly derived from the Yalu River, represents a Holocene Highstand System Tract sequence formed since the highest sea level around 7.0 ka. The Yalu River-derived sediments were redeposited in the area off the southeast coast of the Liaodong Peninsula after resuspension and transportation by the Liaonan Coastal Current.展开更多
This work investigated the pore structure characteristics and reservoir features of the finegrained tight reservoirs in the lower member of the Xinhe Formation(J2x1) in the Xiaohu subsag,Yabulai Basin based on core sa...This work investigated the pore structure characteristics and reservoir features of the finegrained tight reservoirs in the lower member of the Xinhe Formation(J2x1) in the Xiaohu subsag,Yabulai Basin based on core samples through various techniques. Interbedded silt/fine sandstones and mudstones are developed in the study area. Scanning electron microscopy(SEM) images were used to delineate different types of pores, including primary intergranular pores, secondary intergranular and intragranular pores, organic pores and fractures. The pore types were distinguished by pore size, pore area, location and formation process. The pore radii of the fine-grained rocks range from 1 nm to 1.55μm, mainly concentrated between 5 and 300 nm by low pressure N2adsorption and MICP analyses. The pore structure parameters of pore throat size and pore throat sorting coefficient are both positively correlated with porosity, while pore throat sorting coefficient has a negative correlation with permeability. The pore structures of the studied samples are much related to the mineral type and content and grain size, followed by TOC content. In these rocks with relatively low TOC and low maturity, the rigid minerals protect pores with pressure shadow from collapse, and dissolution-related pores contribute a lot to inorganic porosity. In contrast, these rocks with abundant TOC contain a large number of organic pores. The permeability of the fine-grained tight reservoir is mainly dominated by larger pore throats, while a large number of small pores(mostly <0.1 μm) contribute considerably to porosity. These results have deepened our understanding of the interbedded fine-grained tight reservoirs and can be applicable to fine-grained reservoirs in a similar setting.展开更多
Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are c...Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.展开更多
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmissio...Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.展开更多
In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic ...In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic or stochastic.Their method is based on a comparison of neighbouring values.This paper further develops PE,and proposes the concept of fine-grained PE (FGPE) defined by the order pattern and magnitude of the difference between neighbouring values. This measure excludes the case where vectors with a distinct appearance are mistakenly mapped onto the same permutation type,and consequently FGPE becomes more sensitive to the dynamical change of time series than does PE,according to our simulation and experimental results.展开更多
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size...In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.展开更多
Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oi...Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.展开更多
Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore struc...Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore structure of lacustrine fine-grained rocks,the 340.6 m continuous core of Cretaceous Qing-1 Member from five wells in the southern central depression of the Songliao Basin was analyzed using X-ray diffraction,Rock-Eval pyrolysis,low-temperature nitrogen adsorption,high-pressure mercury injection,argon ion polishing-field emission scanning electron microscopy,and laser scanning confocal microscopy.Based on mineral compositions,organic matter abundance and sedimentary structure,lacustrine fine-grained rocks in the study area were divided into ten lithofacies,with their spatial distributions mainly influenced by tectonic cycle,climate cycle and provenance.Furthermore,pore structure characteristics of different lithofacies are summarized.(1)The siliceous mudstone lithofacies with low TOC content and the laminated/layered claybearing siliceous mudstone lithofacies with medium TOC content have the highest proportion of first-class pores(diameter>100 nm),making it the most favourable lithofacies for the accumulation of shale oil and shale gas.(2)The massive claybearing siliceous mudstone lithofacies with low TOC content has the highest proportion of second-class pores(diameter ranges from 10 to 100 nm),making it a favourable lithofacies for the enrichment of shale gas.(3)The massive clay-bearing siliceous mudstone lithofacies with high TOC content has the highest proportion of third-class pores(diameter<10 nm),making it intermediate in gas storage and flow.Laser confocal oil analysis shows that the heavy component of oil is mainly distributed in the clay lamina,while the light part with higher mobility is mainly concentrated in the silty lamina.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
文摘Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.
基金supported by the BK21 FOUR Program of the National Research Foundation of Korea funded by the Ministry of Education(NRF5199991014091)Seok-Won Lee’s work was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Artificial Intelligence Convergence Innovation Human Resources Development(IITP-2024-RS-2023-00255968)grant funded by the Korea government(MSIT).
文摘Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.
基金the Open Project of Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education under Grant No.YYZN-2023-4the Ph.D.Fund of Chengdu Technological University under Grant No.2020RC002.
文摘The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
文摘In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affects this strength,we conducted direct shear tests under various conditions such as different fine-grained soil content,normal stress,and initial moisture content of the soil.By analyzing parameters like soil properties,and volume of ice content,and using the Mohr-Coulomb strength theory to define interface strength,we aimed to indirectly measure the cementation strength of the interface.Our findings revealed that as the particle content increased,the interface stress-strain curves became noticeably stiffer.We also observed a positive linear relationship between freezing strength and silt content,while the initial moisture content of the soil did not significantly impact the strengthening effect of fine-grained soil on freezing strength.Moreover,we discovered that as the powder content increased,the force binding the ice to the interface decreased,while the friction angle at the interface increased.However,the cohesion force at the interface remained relatively unchanged.Overall,our analysis suggests that the increase in freezing strength due to fine-grained soil content is primarily due to the heightened friction between aeolian sand and the interface.
基金jointly supported by five projects which are respectively funded by the National Natural Science Foundation of China(Nos.41402253,41272316,41372287)the Postdoctoral Science Foundation of China(Nos.2014M561963,2016T90653)
文摘A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
基金Projects(2016ZE57008,20163657004)supported by Aeronautical Science Foundation of ChinaProject(USCAST2016-20)supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(51875350)supported by the National Natural Science Foundation of China
文摘In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.
基金Project(E2019203005)supported by the Natural Science Foundation of Hebei Province,China。
文摘Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.
文摘For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.
文摘Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.
基金Supported by the National Natural Science Foundation of China(No.41106043)the China Geological Survey(Nos.GZH200800501,GZH200900501)the Open Fund of State Key Laboratory of Marine Geology(No.MG0903)
文摘High-resolution seismic profiles and surface samples were studied in detail in order to determine the structures, provenance, and dynamic mechanisms of a fine-grained deposit in the southeast coastal area of the Liaodong Peninsula, China. Results indicate that there is a prominent fine-grained deposit distributed alongshore up to 14 m thick, which thins out to less than 2 m in both seaward and landward directions, forming an fl-shaped pattern of cross-section. The deposit is 180-300 km away from the Yalu River mouth and extends along the southeast coast of the Liaodong Peninsula between the northeast of Dalian Bay and southwest of the Changshan Islands, in water depths of 20-40 m. The deposit, which is mainly derived from the Yalu River, represents a Holocene Highstand System Tract sequence formed since the highest sea level around 7.0 ka. The Yalu River-derived sediments were redeposited in the area off the southeast coast of the Liaodong Peninsula after resuspension and transportation by the Liaonan Coastal Current.
基金financially supported by the National Natural Science Foundation of China (grant No. U1762217)the State Key Development Program for Basic Research of China (grant No. 2014CB239002)+1 种基金the National Science and Technology Special Grant (grant No. 2016ZX05006-007)the Fundamental Research Funds for the Central Universities (grant No. 15CX06009A)
文摘This work investigated the pore structure characteristics and reservoir features of the finegrained tight reservoirs in the lower member of the Xinhe Formation(J2x1) in the Xiaohu subsag,Yabulai Basin based on core samples through various techniques. Interbedded silt/fine sandstones and mudstones are developed in the study area. Scanning electron microscopy(SEM) images were used to delineate different types of pores, including primary intergranular pores, secondary intergranular and intragranular pores, organic pores and fractures. The pore types were distinguished by pore size, pore area, location and formation process. The pore radii of the fine-grained rocks range from 1 nm to 1.55μm, mainly concentrated between 5 and 300 nm by low pressure N2adsorption and MICP analyses. The pore structure parameters of pore throat size and pore throat sorting coefficient are both positively correlated with porosity, while pore throat sorting coefficient has a negative correlation with permeability. The pore structures of the studied samples are much related to the mineral type and content and grain size, followed by TOC content. In these rocks with relatively low TOC and low maturity, the rigid minerals protect pores with pressure shadow from collapse, and dissolution-related pores contribute a lot to inorganic porosity. In contrast, these rocks with abundant TOC contain a large number of organic pores. The permeability of the fine-grained tight reservoir is mainly dominated by larger pore throats, while a large number of small pores(mostly <0.1 μm) contribute considerably to porosity. These results have deepened our understanding of the interbedded fine-grained tight reservoirs and can be applicable to fine-grained reservoirs in a similar setting.
基金financially supported by the National Natural Science Foundation of China(No.42002133,42072150)Natural Science Foundation of Beijing(8204069)+1 种基金Strategic Cooperation Project of PetroChina and CUPB(ZLZX2020-01-06-01)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)
文摘Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
基金supported by the National Science fund for Distinguished Young Scholars (No.50625204)the National Natural Science Foundation of China (Science Fund for Creative Research Groups)(No.50621201)+1 种基金the Major State Basic Research Development Program of China (No.2009CB623301)the National High-Tech Research and Development Program of China (No.2006AA03Z0428), and Samsung Electro-Mechanics Co., Ltd.
文摘Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2007AA04Z238)the Qingdao Foundation for Development of Science and Technology,China (Grant No 06-2-2-10-JCH)
文摘In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic or stochastic.Their method is based on a comparison of neighbouring values.This paper further develops PE,and proposes the concept of fine-grained PE (FGPE) defined by the order pattern and magnitude of the difference between neighbouring values. This measure excludes the case where vectors with a distinct appearance are mistakenly mapped onto the same permutation type,and consequently FGPE becomes more sensitive to the dynamical change of time series than does PE,according to our simulation and experimental results.
基金funded by the Natural Sciences and Engineering Research Council,Canada,via the COSTA(Continental Slope Stability)-Canada projectsupported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF)+1 种基金funded by the Ministry of Science,ICT&Future Planning(Grant No.2012M3A2A1050983)the Research Project (11-7622,13-3212)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)
文摘In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.
基金National Natural Science Foundation of China(Grant No.42002133,42072150)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-06)for the financial supports and permissions to publish this paper
文摘Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.
基金granted by the National Nature Science Foundation of China(Grants No.41902128 and 41872152)the Fundamental Research Funds for the Central Universities(Grant No.18CX02055A)+1 种基金the major national R&D projects(2017ZX05008-006-006002)the Key Laboratory for Strategic Evaluation of Shale Gas Resources,Ministry of Land and Resources(Grant No.20171101)。
文摘Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore structure of lacustrine fine-grained rocks,the 340.6 m continuous core of Cretaceous Qing-1 Member from five wells in the southern central depression of the Songliao Basin was analyzed using X-ray diffraction,Rock-Eval pyrolysis,low-temperature nitrogen adsorption,high-pressure mercury injection,argon ion polishing-field emission scanning electron microscopy,and laser scanning confocal microscopy.Based on mineral compositions,organic matter abundance and sedimentary structure,lacustrine fine-grained rocks in the study area were divided into ten lithofacies,with their spatial distributions mainly influenced by tectonic cycle,climate cycle and provenance.Furthermore,pore structure characteristics of different lithofacies are summarized.(1)The siliceous mudstone lithofacies with low TOC content and the laminated/layered claybearing siliceous mudstone lithofacies with medium TOC content have the highest proportion of first-class pores(diameter>100 nm),making it the most favourable lithofacies for the accumulation of shale oil and shale gas.(2)The massive claybearing siliceous mudstone lithofacies with low TOC content has the highest proportion of second-class pores(diameter ranges from 10 to 100 nm),making it a favourable lithofacies for the enrichment of shale gas.(3)The massive clay-bearing siliceous mudstone lithofacies with high TOC content has the highest proportion of third-class pores(diameter<10 nm),making it intermediate in gas storage and flow.Laser confocal oil analysis shows that the heavy component of oil is mainly distributed in the clay lamina,while the light part with higher mobility is mainly concentrated in the silty lamina.