The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi...Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.展开更多
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha...Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.展开更多
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi...The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.展开更多
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti...3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.展开更多
The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is ...The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.展开更多
An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection ...An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.展开更多
In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affe...In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affects this strength,we conducted direct shear tests under various conditions such as different fine-grained soil content,normal stress,and initial moisture content of the soil.By analyzing parameters like soil properties,and volume of ice content,and using the Mohr-Coulomb strength theory to define interface strength,we aimed to indirectly measure the cementation strength of the interface.Our findings revealed that as the particle content increased,the interface stress-strain curves became noticeably stiffer.We also observed a positive linear relationship between freezing strength and silt content,while the initial moisture content of the soil did not significantly impact the strengthening effect of fine-grained soil on freezing strength.Moreover,we discovered that as the powder content increased,the force binding the ice to the interface decreased,while the friction angle at the interface increased.However,the cohesion force at the interface remained relatively unchanged.Overall,our analysis suggests that the increase in freezing strength due to fine-grained soil content is primarily due to the heightened friction between aeolian sand and the interface.展开更多
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine...The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.展开更多
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal...Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.展开更多
A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from t...A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.展开更多
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m...Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.展开更多
Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal windo...Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal window to learn local video representation.However,these methods failed to capture complex motion patterns due to their limited receptive field.To solve the above problems,this paper proposes a lightweight Temporal Pyramid Excitation(TPE)module to capture the short,medium,and long-term temporal context.In this method,Temporal Pyramid(TP)module can effectively expand the temporal receptive field of the network by using the multi-temporal kernel decomposition without significantly increasing the computational cost.In addition,the Multi Excitation module can emphasize temporal importance to enhance the temporal feature representation learning.TPE can be integrated into ResNet50,and building a compact video learning framework-TPENet.Extensive validation experiments on several challenging benchmark(Something-Something V1,Something-Something V2,UCF-101,and HMDB51)datasets demonstrate that our method achieves a preferable balance between computation and accuracy.展开更多
Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,...Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.展开更多
Neurodegeneration is attributable to metabolic disturbances in the various cell types responsible for this condition, in respect of glucose utilisation and dysfunctional mitochondrial oxidative mechanisms. The propert...Neurodegeneration is attributable to metabolic disturbances in the various cell types responsible for this condition, in respect of glucose utilisation and dysfunctional mitochondrial oxidative mechanisms. The properties of neurotoxins and antagonists that limit their action are well documented in disease models, whereas effective therapy is very limited. Cell apoptosis, a general marker of neurodegeneration, is also of therapeutic interest in the treatment of cancer. cGMP nucleotide influences apoptosis and has a role in maintaining equilibrium within cell redox parameters. The chemical structure of cGMP provides a comparative template for demonstrating relative molecular similarity within the structures of natural and synthetic compounds influencing tumour cell apoptosis. The present study uses computational software to investigate molecular similarity within the structures of cGMP and compounds that modulate cell apoptosis in experimental models of diabetic peripheral neuropathy (DPN), Parkinson’s and multiple sclerosis. Differential molecular similarity demonstrated in neurotoxin and antagonist structures implicate metabolite impairment of cGMP signaling function as a common mechanism in the initial phases of these neurodegenerative conditions.展开更多
Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the dif...Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences.The Convolutional Neural Network(CNN)is often used to extract image features in image captioning,and the use of object detection networks to extract region features has achieved great success.However,the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation.We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features.First,we extract fine-grained features using a panoramic segmentation algorithm.Second,we suggest two fusion methods and contrast their fusion outcomes.An X-linear Attention Network(X-LAN)serves as the foundation for both fusion methods.According to experimental findings on the COCO dataset,the two-branch fusion approach is superior.It is important to note that on the COCO Karpathy test split,CIDEr is increased up to 134.3%in comparison to the baseline,highlighting the potency and viability of our method.展开更多
The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and ...The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
文摘Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.
基金supported by the BK21 FOUR Program of the National Research Foundation of Korea funded by the Ministry of Education(NRF5199991014091)Seok-Won Lee’s work was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Artificial Intelligence Convergence Innovation Human Resources Development(IITP-2024-RS-2023-00255968)grant funded by the Korea government(MSIT).
文摘Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy.
基金the Open Project of Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education under Grant No.YYZN-2023-4the Ph.D.Fund of Chengdu Technological University under Grant No.2020RC002.
文摘The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金the National Natural Science Foundation of China(Nos.51988101 and 42007262).
文摘3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.
基金support from the National Key Research and Development Program of China(No.2018YFD0900704)the National Natural Science Foundation of China(No.31972796).
文摘The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.
文摘An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.
文摘In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affects this strength,we conducted direct shear tests under various conditions such as different fine-grained soil content,normal stress,and initial moisture content of the soil.By analyzing parameters like soil properties,and volume of ice content,and using the Mohr-Coulomb strength theory to define interface strength,we aimed to indirectly measure the cementation strength of the interface.Our findings revealed that as the particle content increased,the interface stress-strain curves became noticeably stiffer.We also observed a positive linear relationship between freezing strength and silt content,while the initial moisture content of the soil did not significantly impact the strengthening effect of fine-grained soil on freezing strength.Moreover,we discovered that as the powder content increased,the force binding the ice to the interface decreased,while the friction angle at the interface increased.However,the cohesion force at the interface remained relatively unchanged.Overall,our analysis suggests that the increase in freezing strength due to fine-grained soil content is primarily due to the heightened friction between aeolian sand and the interface.
基金Supported by the Petrochina Science and Technology Project(2021DJ18).
文摘The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.
基金This research was funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-62-KNOW-026).
文摘Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.
文摘A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.
基金supported in part by the National Natural Science Foundation of China under Grant 62272062the Researchers Supporting Project number.(RSP2023R102)King Saud University+5 种基金Riyadh,Saudi Arabia,the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003the National Science Foundation of Hunan Province under Grant 2020JJ2029the Hunan Provincial Key Research and Development Program under Grant 2022GK2019the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143the Open Fund of Key Laboratory of Safety Control of Bridge Engineering,Ministry of Education(Changsha University of Science Technology)under Grant 21KB07.
文摘Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.
基金supported by the research team of Xi’an Traffic Engineering Institute and the Young and middle-aged fund project of Xi’an Traffic Engineering Institute (2022KY-02).
文摘Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal window to learn local video representation.However,these methods failed to capture complex motion patterns due to their limited receptive field.To solve the above problems,this paper proposes a lightweight Temporal Pyramid Excitation(TPE)module to capture the short,medium,and long-term temporal context.In this method,Temporal Pyramid(TP)module can effectively expand the temporal receptive field of the network by using the multi-temporal kernel decomposition without significantly increasing the computational cost.In addition,the Multi Excitation module can emphasize temporal importance to enhance the temporal feature representation learning.TPE can be integrated into ResNet50,and building a compact video learning framework-TPENet.Extensive validation experiments on several challenging benchmark(Something-Something V1,Something-Something V2,UCF-101,and HMDB51)datasets demonstrate that our method achieves a preferable balance between computation and accuracy.
基金financially supported by the National Natural Science Fundation of China(Grant Nos.42161065 and 41461038)。
文摘Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.
文摘Neurodegeneration is attributable to metabolic disturbances in the various cell types responsible for this condition, in respect of glucose utilisation and dysfunctional mitochondrial oxidative mechanisms. The properties of neurotoxins and antagonists that limit their action are well documented in disease models, whereas effective therapy is very limited. Cell apoptosis, a general marker of neurodegeneration, is also of therapeutic interest in the treatment of cancer. cGMP nucleotide influences apoptosis and has a role in maintaining equilibrium within cell redox parameters. The chemical structure of cGMP provides a comparative template for demonstrating relative molecular similarity within the structures of natural and synthetic compounds influencing tumour cell apoptosis. The present study uses computational software to investigate molecular similarity within the structures of cGMP and compounds that modulate cell apoptosis in experimental models of diabetic peripheral neuropathy (DPN), Parkinson’s and multiple sclerosis. Differential molecular similarity demonstrated in neurotoxin and antagonist structures implicate metabolite impairment of cGMP signaling function as a common mechanism in the initial phases of these neurodegenerative conditions.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 6150140in part by the Youth Innovation Project(21032158-Y)of Zhejiang Sci-Tech University.
文摘Image captioning involves two different major modalities(image and sentence)that convert a given image into a language that adheres to visual semantics.Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences.The Convolutional Neural Network(CNN)is often used to extract image features in image captioning,and the use of object detection networks to extract region features has achieved great success.However,the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation.We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features.First,we extract fine-grained features using a panoramic segmentation algorithm.Second,we suggest two fusion methods and contrast their fusion outcomes.An X-linear Attention Network(X-LAN)serves as the foundation for both fusion methods.According to experimental findings on the COCO dataset,the two-branch fusion approach is superior.It is important to note that on the COCO Karpathy test split,CIDEr is increased up to 134.3%in comparison to the baseline,highlighting the potency and viability of our method.
基金founded by the National Natural Science Foundation of China(Grant No.41772130)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_2602)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ035)the Fundamental Research Program of Shanxi Province(Grant No.202103021223283)。
文摘The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.