The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, th...The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.展开更多
The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in hi...The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding,but usually accompanied with moderate appearance of milled rice.The null gs9 allele shows a good potential for improving grain shape and appearance.However,GS9 and qPE9-1/DEP1 loci are tightly linked,and their interaction is unclear,which obviously restricts their utilization in modern rice breeding.In the present study,comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently.Three nearisogenic lines(NILs)carrying various allelic combinations of these two loci,NIL(gs9/qpe9-1),NIL(GS9/qPE9-1)and NIL(gs9/qPE9-1),in the EP japonica cultivar 2661(GS9/qpe9-1)background were developed for genetic interaction analysis.GS9 and qPE9-1 had additive effects on determining grain size,and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars.Additionally,introgression lines(ILs)developed in another released EP japonica cultivar Wuyujing 27(WYJ27)background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars.This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.展开更多
The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To und...The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To understand and control the grain evolution,a multiscale simulation is applied to investigate the relationship between the grain selection,growth orientation,and the molten pool morphology with the different deposition layer numbers and processing parameters.The accuracy of the simulation is validated by experiments in both qualitative and quantitative ways.Results show that when the grain with unfavorable orientation loses the competitive growth with its neighbors,there will be a great chance that the blocked grain is eliminated in the following layer-and-layer deposition,which leads to the increase of the grain width.The size of the molten pool increases remarkably as the layer number increases,which lays a heavy burden on the stability of the molten pool.The analytical relationship between the molten pool morphology and the grain growth orientation is also deduced.The flat molten pool causes the grains with the <001> direction close to the building direction to have greater survival potential.Besides,decreasing the line power energy shows little effect on the stability of the molten pool and the grain growth orientation,especially when the deposited layer number is large.The revealing mechanisms will help in understanding and further controlling the grain evolution.展开更多
As a big agricultural country,the People’s Republic of China has experienced a series of natural disasters since its founding,such as the 1959–1961 Great Famine,the 1998 floods and the 2008 snowstorm.Here we present...As a big agricultural country,the People’s Republic of China has experienced a series of natural disasters since its founding,such as the 1959–1961 Great Famine,the 1998 floods and the 2008 snowstorm.Here we present a dataset summarizing four categories of meteorological disasteraffected area at provincial level in China from 1949 to 2015:mildly-affected area,moderately-affected area,heavily-affected area,and total affected area.Based on crop-planting data and natural disaster data,grain losses are also evaluated by using a grain loss assessment model.The dataset plays an important role in the future prediction,prevention,and reduction of agrometeorological disasters.展开更多
An efficient and good DNA extraction protocol should be simple, affordable and yield enough DNA with high quality. Rice(Oryza sativa L.) DNA extraction methods often use seedlings or leaves rather than the grains and ...An efficient and good DNA extraction protocol should be simple, affordable and yield enough DNA with high quality. Rice(Oryza sativa L.) DNA extraction methods often use seedlings or leaves rather than the grains and tend to be time-consuming, involve multiple steps, and use hazardous chemicals and expensive enzymes. Rice grains offer several benefits over seedlings and leaves as a source of DNA for genetic analysis. However, these benefits are underutilized because the bulk of a rice grain is made up of starch. It is particularly important, but difficult to get rid of the starch while extracting DNA from rice grains. This co-precipitated polysaccharide is a known inhibitor of DNA polymerase activity in polymerase chain reaction(PCR). We describe here a very simple and highly affordable Chelex~?-100 based DNA extraction method from rice grains. It does not require any hazardous chemicals or enzymes. This method reproducibly extracts DNA with good purity indices(A_(260)/A_(230) and A_(260)/A_(280) values), but requires only a few steps.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite pa...The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite particle size on permanent change in dimensions, cold crushing strength, oxidation resistance, and corrosion resistance of Al2O3 - SiC - C bricks was investigated. The results show that with the decrease of the pyrophyllite particle size, the permanent change in dimensions of Al2O3 - SiC - C bricks decreases, cold crushing strength increases, the oxidation resistance at 1400 ℃ increases, and the corrosion resistance at 1500℃ decreases.展开更多
This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%pla...This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature.展开更多
The equilibrium potential of fluffy dust grains in plasma are calculated for comet P/Halley and comet P/G-Z. It is found that the dust equilibrium potential linearly correlates with the logarithm of electron density. ...The equilibrium potential of fluffy dust grains in plasma are calculated for comet P/Halley and comet P/G-Z. It is found that the dust equilibrium potential linearly correlates with the logarithm of electron density. We propose this relationship can also be applied to comet Hale-Bopp.展开更多
This study was carried out to find out how dependent are two local rice <span style="font-family:Verdana;">varieties (Magitolngar and Tox-728-1) to inoculation with selected</span><span style=...This study was carried out to find out how dependent are two local rice <span style="font-family:Verdana;">varieties (Magitolngar and Tox-728-1) to inoculation with selected</span><span style="font-family:Verdana;"> endogenous arbuscular mycorrhizal fungi (AMF) in a field where they were isolated. The multi-indigenous endomycorrhiza spores previously isolated and identified were the active ingredient in the production of bioinoculants used for this purpose. Spores massively multiplied from the rhizosphere of each rice variety in each of the four locally collected soils substrates were harvested to constitute 08 AMF inoculants (Kema = T1;Lama = T2;Latox = T3;Ndjatox = T4;Koloma = T5;Kolotox = T6;Ndjama = T7;Ketox = T8). These inoculants </span><span style="font-family:Verdana;">were field tested on the two rice varieties at Kelo, under a complete</span><span style="font-family:Verdana;"> randomized block design, comprising 10 treatments (8 inoculants, 01 positive control = T9, 01 negative control = T10), each of which was repeated thrice. The analysis of data indicates that AMF-inoculated plants were taller, developed more tillers/plant, and produced more rice grains/panicle than non-AMF-inoculated plants for both studied rice varieties. The rice variety Madjitolngar </span><span style="font-family:Verdana;">yielded more grains (7.5 t/ha) than the Tox-728-1 variety (5.8 t/ha).</span><span style="font-family:Verdana;"> Moreover, inoculants Koloma (T1), Latox (T3) and Kolotox (T6) on the one hand, Koloma (T1) and Ketox (T8) on the other hand, were best suited for the improvement of growth and yield of the rice varieties Madjitolngar and Tox-728-1 respectively, tested under field conditions at Kelo. In this study, </span><span style="font-family:Verdana;">the two rice varieties have shown a dependency to endomycorrhizal</span><span style="font-family:Verdana;"> symbiosis at Kelo, and therefore, an industrial-scale production of efficient endomycorrhal inoculants is necessary to sustainably boost the productivity of this important crop in Chad.</span>展开更多
Solidification experiments were carried out in Al-Cu (w(Cu) = 5%) alloy to investigate the influence of pulse magneto-oscillation (PMO) on the efficiency of the Al3Ti1B refining agent at high superheat. The expe...Solidification experiments were carried out in Al-Cu (w(Cu) = 5%) alloy to investigate the influence of pulse magneto-oscillation (PMO) on the efficiency of the Al3Ti1B refining agent at high superheat. The experimental solidification results show that the degree of superheat has remarkable influence on the efficiency of the grain refiner. However, the application of PMO has the potential to reduce the influence of superheat variation on the efficiency of the grain refiner. Finally, the mechanism underlying this phenomenon is discussed by performing a numerical simulation to show the forced flow inside the melt caused by PMO.展开更多
The dynamic recrystallization behavior of 35CrMo steel was studied with compression test in the temperature range of 1 223 1 423 K and the strain rate range of 0.01 10.00 s -1 . The initiation and evolution of dynamic...The dynamic recrystallization behavior of 35CrMo steel was studied with compression test in the temperature range of 1 223 1 423 K and the strain rate range of 0.01 10.00 s -1 . The initiation and evolution of dynamic recrystallization were investigated with microstructure analysis and then the critical strain ε c for dynamic recrystallization initiation, the strain for maximum softening rate ε * and the steady strain ε s were obtained to be 2.92×10 -3 Z 0.1381 , 1.60×10 -3 Z 0.178 0 and 3.26×10 -2 × Z 0.097 2 respectively by analysis of work hardening rate strain θ ε curves, where Z is the Zener Hollomon parameter. The dynamic recrystallization fraction was determined using recrystallization theory, and the effects of initial grain size, strain rate and deformated temperature on the dynamic recrystallization kinetics were investigated. The results show: X DRX =1- exp(-3.23( ε-ε cε s-ε c ) 2.28 ), the dynamic recrystallization fraction is slightly delayed due to the somewhat larger initial grain size and markedly delayed with the decrease of temperature. On the other hand, it is significantly accelerated with the increase of the strain rate. Finally, the relationships between the initiation time, ending time of dynamic recrystallization and the deformed temperature were analyzed in detail.展开更多
A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of ever...A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of every CHT, phase transformation recrystallization happens. The recrystallized grains appear mainly on the original grain boundaries. The average grain size of 13.2 μm obtained by 1040 ℃×1 h solution treatment for this experimental steel can be refined to 2.2 μm after five CHT's. Furthermore, the effects of phenomenological parameters in our model are discussed.展开更多
Tortuosity is an important parameter for char- acterizing transport properties within porous materials and is of interest in a broad range of fields, such as energy storage and conversion materials. One of the paramet...Tortuosity is an important parameter for char- acterizing transport properties within porous materials and is of interest in a broad range of fields, such as energy storage and conversion materials. One of the parameters that impacts the tortuosity value is the geometry of the solid phase which, in this study, is considered as stochas- tically-placed rectangular particles. Through lattice Boltz- mann modelling (LBM), we determined the impact of particle aspect ratio on the intrinsic tortuosity-porosity relationships of two-dimensional porous media composed of rectangular particles. These relationships were isolated for materials with grain (particle) aspect ratios of e { 1, 2, 3 } and porosities from [0.55 - 0.95]. We determined that a minimum of 6, 8 and 10 stochastic simulations, respec- tively, were required to calculate these average tortuosity values in laminar flow (Re 〈〈 1). This novel application of the LBM to study the effects of porosity and aspect ratio of rectangular grains on tortuosity can be used in the tailoring of materials for clean energy.展开更多
The pulsed magneto-oscillation (PMO) technique has the potential to be applied in the production of heavy steel ingot. In order to confirm it and achieve more insights, the solidification of rectangular 65Mn steel i...The pulsed magneto-oscillation (PMO) technique has the potential to be applied in the production of heavy steel ingot. In order to confirm it and achieve more insights, the solidification of rectangular 65Mn steel ingot with the size of 220 mm×220 mm × 1000 mm was investigated under the impact of PMO. Experimental results present that PMO treatment can remarkably refine the solidified microstructure of 65Mn steel ingot in comparison with the reference ingot without PMO. The application of PMO not only significantly reduces the grain size, but also promotes the morphology transition of equiaxed grains from well-developed dendritic structures to globular structures. And the resulted globular morphology is mainly due to the fact that the PMO-induced forced flow enhances the stability of crystal growth. As a consequence, the average tensile strength of as-cast samples is enhanced from 643.4 to 762.9 MPa under the application of PMO.展开更多
基金Funded by"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA05090101,XDA05090104)China Global Change Research Program(2010CB950101,2012CB955403)+2 种基金Basic Research Project of the Ministry of Science and Technology(2011FY120300)Doctor Foundation of Xinyang Normal University(0201403)National Natural Science Foundation of China(41271124,41101549)~~
文摘The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.
基金This work was supported by the National Natural Science Foundation of China(31971914)the National Key Research and Development Program of China(2016YFD0100501)+3 种基金the Key Research and Development Program of Jiangsu Province,China(BE2018357)the Science Fund for Distinguished Young Scholars of Jiangsu Province,China(BK20200045)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(18)1001)the Jiangsu PAPD Talent Project,and the Yong Elite Scientists Sponsorship Program by China Association for Science and Technology(2018QNRC001).
文摘The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding,but usually accompanied with moderate appearance of milled rice.The null gs9 allele shows a good potential for improving grain shape and appearance.However,GS9 and qPE9-1/DEP1 loci are tightly linked,and their interaction is unclear,which obviously restricts their utilization in modern rice breeding.In the present study,comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently.Three nearisogenic lines(NILs)carrying various allelic combinations of these two loci,NIL(gs9/qpe9-1),NIL(GS9/qPE9-1)and NIL(gs9/qPE9-1),in the EP japonica cultivar 2661(GS9/qpe9-1)background were developed for genetic interaction analysis.GS9 and qPE9-1 had additive effects on determining grain size,and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars.Additionally,introgression lines(ILs)developed in another released EP japonica cultivar Wuyujing 27(WYJ27)background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars.This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.
基金supported by the National Key Research and Development Program of China (No. 2017YFB1103700)the National Natural Science Foundation of China (No. 51575304 and No. 51674153)。
文摘The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To understand and control the grain evolution,a multiscale simulation is applied to investigate the relationship between the grain selection,growth orientation,and the molten pool morphology with the different deposition layer numbers and processing parameters.The accuracy of the simulation is validated by experiments in both qualitative and quantitative ways.Results show that when the grain with unfavorable orientation loses the competitive growth with its neighbors,there will be a great chance that the blocked grain is eliminated in the following layer-and-layer deposition,which leads to the increase of the grain width.The size of the molten pool increases remarkably as the layer number increases,which lays a heavy burden on the stability of the molten pool.The analytical relationship between the molten pool morphology and the grain growth orientation is also deduced.The flat molten pool causes the grains with the <001> direction close to the building direction to have greater survival potential.Besides,decreasing the line power energy shows little effect on the stability of the molten pool and the grain growth orientation,especially when the deposited layer number is large.The revealing mechanisms will help in understanding and further controlling the grain evolution.
基金supported by the National Natural Science Foundation of China(No.41571427)the Innovation Group Program of the Chinese Academy of Agricultural Sciences(Grant No.Y2017JC33).
文摘As a big agricultural country,the People’s Republic of China has experienced a series of natural disasters since its founding,such as the 1959–1961 Great Famine,the 1998 floods and the 2008 snowstorm.Here we present a dataset summarizing four categories of meteorological disasteraffected area at provincial level in China from 1949 to 2015:mildly-affected area,moderately-affected area,heavily-affected area,and total affected area.Based on crop-planting data and natural disaster data,grain losses are also evaluated by using a grain loss assessment model.The dataset plays an important role in the future prediction,prevention,and reduction of agrometeorological disasters.
基金conducted partly with the Regional Cooperative Agreement project(RAS5062)grant from the International Atomic Energy Agencythe University Grants Commission’s fund(2015–2016)for research projects in the University of Dhaka+1 种基金International Atomic Energy Agencythe University Grants Commission,Bangladesh for their support。
文摘An efficient and good DNA extraction protocol should be simple, affordable and yield enough DNA with high quality. Rice(Oryza sativa L.) DNA extraction methods often use seedlings or leaves rather than the grains and tend to be time-consuming, involve multiple steps, and use hazardous chemicals and expensive enzymes. Rice grains offer several benefits over seedlings and leaves as a source of DNA for genetic analysis. However, these benefits are underutilized because the bulk of a rice grain is made up of starch. It is particularly important, but difficult to get rid of the starch while extracting DNA from rice grains. This co-precipitated polysaccharide is a known inhibitor of DNA polymerase activity in polymerase chain reaction(PCR). We describe here a very simple and highly affordable Chelex~?-100 based DNA extraction method from rice grains. It does not require any hazardous chemicals or enzymes. This method reproducibly extracts DNA with good purity indices(A_(260)/A_(230) and A_(260)/A_(280) values), but requires only a few steps.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite particle size on permanent change in dimensions, cold crushing strength, oxidation resistance, and corrosion resistance of Al2O3 - SiC - C bricks was investigated. The results show that with the decrease of the pyrophyllite particle size, the permanent change in dimensions of Al2O3 - SiC - C bricks decreases, cold crushing strength increases, the oxidation resistance at 1400 ℃ increases, and the corrosion resistance at 1500℃ decreases.
基金supported by the National Research Foundation of Korea(NRF,Grant No.2019R1A2C1085272)funded by the Ministry of Science,ICTFuture Planning(MSIP,South Korea)。
文摘This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature.
基金theNationalNaturalScienceFoundationofChinaUnderGrant (No .199730 18& 196 5 30 0 1)
文摘The equilibrium potential of fluffy dust grains in plasma are calculated for comet P/Halley and comet P/G-Z. It is found that the dust equilibrium potential linearly correlates with the logarithm of electron density. We propose this relationship can also be applied to comet Hale-Bopp.
文摘This study was carried out to find out how dependent are two local rice <span style="font-family:Verdana;">varieties (Magitolngar and Tox-728-1) to inoculation with selected</span><span style="font-family:Verdana;"> endogenous arbuscular mycorrhizal fungi (AMF) in a field where they were isolated. The multi-indigenous endomycorrhiza spores previously isolated and identified were the active ingredient in the production of bioinoculants used for this purpose. Spores massively multiplied from the rhizosphere of each rice variety in each of the four locally collected soils substrates were harvested to constitute 08 AMF inoculants (Kema = T1;Lama = T2;Latox = T3;Ndjatox = T4;Koloma = T5;Kolotox = T6;Ndjama = T7;Ketox = T8). These inoculants </span><span style="font-family:Verdana;">were field tested on the two rice varieties at Kelo, under a complete</span><span style="font-family:Verdana;"> randomized block design, comprising 10 treatments (8 inoculants, 01 positive control = T9, 01 negative control = T10), each of which was repeated thrice. The analysis of data indicates that AMF-inoculated plants were taller, developed more tillers/plant, and produced more rice grains/panicle than non-AMF-inoculated plants for both studied rice varieties. The rice variety Madjitolngar </span><span style="font-family:Verdana;">yielded more grains (7.5 t/ha) than the Tox-728-1 variety (5.8 t/ha).</span><span style="font-family:Verdana;"> Moreover, inoculants Koloma (T1), Latox (T3) and Kolotox (T6) on the one hand, Koloma (T1) and Ketox (T8) on the other hand, were best suited for the improvement of growth and yield of the rice varieties Madjitolngar and Tox-728-1 respectively, tested under field conditions at Kelo. In this study, </span><span style="font-family:Verdana;">the two rice varieties have shown a dependency to endomycorrhizal</span><span style="font-family:Verdana;"> symbiosis at Kelo, and therefore, an industrial-scale production of efficient endomycorrhal inoculants is necessary to sustainably boost the productivity of this important crop in Chad.</span>
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51320105003), Shanghai Government (Grant No. 14DZ2261200), and the Science and Technology Commission of Shanghai Municipality (Granted No. 15520710800).
文摘Solidification experiments were carried out in Al-Cu (w(Cu) = 5%) alloy to investigate the influence of pulse magneto-oscillation (PMO) on the efficiency of the Al3Ti1B refining agent at high superheat. The experimental solidification results show that the degree of superheat has remarkable influence on the efficiency of the grain refiner. However, the application of PMO has the potential to reduce the influence of superheat variation on the efficiency of the grain refiner. Finally, the mechanism underlying this phenomenon is discussed by performing a numerical simulation to show the forced flow inside the melt caused by PMO.
文摘The dynamic recrystallization behavior of 35CrMo steel was studied with compression test in the temperature range of 1 223 1 423 K and the strain rate range of 0.01 10.00 s -1 . The initiation and evolution of dynamic recrystallization were investigated with microstructure analysis and then the critical strain ε c for dynamic recrystallization initiation, the strain for maximum softening rate ε * and the steady strain ε s were obtained to be 2.92×10 -3 Z 0.1381 , 1.60×10 -3 Z 0.178 0 and 3.26×10 -2 × Z 0.097 2 respectively by analysis of work hardening rate strain θ ε curves, where Z is the Zener Hollomon parameter. The dynamic recrystallization fraction was determined using recrystallization theory, and the effects of initial grain size, strain rate and deformated temperature on the dynamic recrystallization kinetics were investigated. The results show: X DRX =1- exp(-3.23( ε-ε cε s-ε c ) 2.28 ), the dynamic recrystallization fraction is slightly delayed due to the somewhat larger initial grain size and markedly delayed with the decrease of temperature. On the other hand, it is significantly accelerated with the increase of the strain rate. Finally, the relationships between the initiation time, ending time of dynamic recrystallization and the deformed temperature were analyzed in detail.
基金supported by National Natural Science Foundation of China(No.51071061)NSAF(No.11176011)
文摘A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of every CHT, phase transformation recrystallization happens. The recrystallized grains appear mainly on the original grain boundaries. The average grain size of 13.2 μm obtained by 1040 ℃×1 h solution treatment for this experimental steel can be refined to 2.2 μm after five CHT's. Furthermore, the effects of phenomenological parameters in our model are discussed.
基金the financial support from Carbon Management Canada Inc. (CMC)Canada Foundation for Innovation (CFI)+2 种基金Natural Sciences and Engineering Research Council of Canada (NSERC)the NSERC Canada Research Chairs Programthe University of Toronto
文摘Tortuosity is an important parameter for char- acterizing transport properties within porous materials and is of interest in a broad range of fields, such as energy storage and conversion materials. One of the parameters that impacts the tortuosity value is the geometry of the solid phase which, in this study, is considered as stochas- tically-placed rectangular particles. Through lattice Boltz- mann modelling (LBM), we determined the impact of particle aspect ratio on the intrinsic tortuosity-porosity relationships of two-dimensional porous media composed of rectangular particles. These relationships were isolated for materials with grain (particle) aspect ratios of e { 1, 2, 3 } and porosities from [0.55 - 0.95]. We determined that a minimum of 6, 8 and 10 stochastic simulations, respec- tively, were required to calculate these average tortuosity values in laminar flow (Re 〈〈 1). This novel application of the LBM to study the effects of porosity and aspect ratio of rectangular grains on tortuosity can be used in the tailoring of materials for clean energy.
基金Acknowledgements The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 51320105003), Shanghai government (Grant No. 14DZ2261200), and the Science and Technology Commission of Shanghai Municipality (Grant No. 15520710800).
文摘The pulsed magneto-oscillation (PMO) technique has the potential to be applied in the production of heavy steel ingot. In order to confirm it and achieve more insights, the solidification of rectangular 65Mn steel ingot with the size of 220 mm×220 mm × 1000 mm was investigated under the impact of PMO. Experimental results present that PMO treatment can remarkably refine the solidified microstructure of 65Mn steel ingot in comparison with the reference ingot without PMO. The application of PMO not only significantly reduces the grain size, but also promotes the morphology transition of equiaxed grains from well-developed dendritic structures to globular structures. And the resulted globular morphology is mainly due to the fact that the PMO-induced forced flow enhances the stability of crystal growth. As a consequence, the average tensile strength of as-cast samples is enhanced from 643.4 to 762.9 MPa under the application of PMO.