期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BLS-identification:A device fingerprint classification mechanism based on broad learning for Internet of Things
1
作者 Yu Zhang Bei Gong Qian Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期728-739,共12页
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin... The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods. 展开更多
关键词 device fingerprint Traffic analysis Class imbalance Broad learning system Access authentication
下载PDF
Indoor Localization with a Crowdsourcing Based Fingerprints Collecting
2
作者 黄正勇 俞晖 +1 位作者 管云峰 陈坤 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期548-557,共10页
Fingerprint matching is adopted by a large family of indoor localization schemes,where collecting fingerprints is inevitable but all consuming.While the increasingly popular crowdsourcing based approach provides an op... Fingerprint matching is adopted by a large family of indoor localization schemes,where collecting fingerprints is inevitable but all consuming.While the increasingly popular crowdsourcing based approach provides an opportunity to relieve the burden of fingerprints collecting,a number of formidable challenges for such an approach have yet been studied.For instance,querying in a large fingerprints database for matching process takes a lot of time and calculation;fingerprints collected by crowdsourcing lacks of robustness because of heterogeneous devices problem.Those are important challenges which impede practical deployment of the fingerprint matching indoor localization system.In this study,targeting on effectively utilizing and mining large amount fingerprint data,enhancing the robustness of fingerprints under heterogeneous devices' collection and realizing the real time localization response,we propose a crowdsourcing based fingerprints collecting mechanism for indoor localization systems.With the proposed approach,massive raw fingerprints will be divided into small clusters while diverse devices' uploaded fingerprints will be merged for overcoming device heterogeneity,both of which will contribute to reduce response time.We also build a mobile cloud testbed to verify the proposed scheme.Comprehensive real world experiment results indicate that the scheme can provide comparable localization accuracy. 展开更多
关键词 indoor localization crowdsourcing cluster device diversity fingerprint extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部