期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel 被引量:4
1
作者 Wen-Ting Zhu Jun-Jun Cui +2 位作者 Zhen-Ye Chen Yang Zhao Li-Qing Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第4期527-536,共10页
The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy st... The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy steels for developing superior low temperature toughness construction steel. The microstructural features were characterized by scanning electron microscope equipped with electron backscatter diffraction, and the mechanical behaviors in terms of tensile properties and impact toughness were analyzed in correlation with microstructural evolution. The results showed that the lower finish cooling temperature could lead to a considerable increase in impact toughness for this steel. A mixed microstructure was obtained by TMCP at lower finish cooling temperature, which contained much fine lath-like bainite with dot-shaped M/A constituent and less granular bainite and bainite ferrite. In this case, this steel possesses yield and ultimate tensile strengths of ~ 885 MPa and 1089 MPa, respectively, and a total elongation of ~ 15.3%, while it has a lower yield ratio of ~ 0.81. The superior impact toughness of ~ 89 J at-20 °C was obtained, and this was resulted from the multi-phase microstructure including grain refinement, preferred grain boundaries misorientation, fine lath-like bainite with dot-shaped M/A constituent. 展开更多
关键词 High strength low alloy steel Thermo-mechanical controlled processing(TMCP) Finish cooling temperature Microstructure Mechanical properties Impact toughness
原文传递
Effect of Thermomechanical Controlled Processing on Mechanical Properties of 490 MPa Grade Low Carbon Cold Heading Steel 被引量:1
2
作者 LI Zhuang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第3期43-48,共6页
Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechan... Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechanical properties of the steel was investigated. The results showed that the mechanical properties of the low carbon cold heading steel could be significantly improved by TMCP without heat treatment. The improvement of mechanical properties can be attributed mainly to the ferrite grain refinement due to low temperature rolling. In the experiments the better ultimate tensile strength and ductility are obtained by lowering finishing cooling temperature within the temperature range from 650 ℃ to 550 ℃ since the interlamellar space in pearlite colonies become smaller. Good mechanical properties can be obtained in a proper austenite condition and thermomechanical processing parameter. The ferrite morphology has a more pronounced effect on the mechanical behavior than refinement of the microstructure. It is possible to realize the replacement of medium-carbon by low-carbon for 490 MPa grade cold heading steel with TMCP. 展开更多
关键词 thermomechanical controlled processing TMCP low carbon cold heading steel low temperature rolling finishing cooling temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部