Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant referen...Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.展开更多
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an expli...The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154) Foundation of State Key Laboratory of Ocean Engineering of China (GKZD010059)+1 种基金 the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2008007) The Lloyd's Register Educational Trust (The LRET)
文摘Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.
基金supported by the Public Science and Technology Research Funds Projects of Ocean(Grant No.201205023)the Program for Liaoning Province Excellent Talents in University(Grant No.LJQ2013077)+1 种基金the Science and Technology Founda-tion of Dalian City(Grant No.2013J21DW009)the Natu-ral Science Foundation of Liaoning Province(Grant No.2014020148)
文摘The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.