In this paper results on the estimates for solutions of certain higher order finite difference equations are established. The main tool employed in our analysis is based on the applications of the discrete inequality ...In this paper results on the estimates for solutions of certain higher order finite difference equations are established. The main tool employed in our analysis is based on the applications of the discrete inequality which provides an explicit bound on the unknown function.展开更多
We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro...We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is s...In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.展开更多
The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analys...The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analysis used in the proof is elementary and the results established provide new estimates for these types of inequalities.AMS (MOS) Subject Classification (1991 ): Primary 26D15.展开更多
The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have th...The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have the advantages of parallel computing, stability and good accuracy. Tn this paper for the two-dimensional diffusion equation, the net region is divided into bands, a special kind of block. This method is called the alternating Band Crank-Nicolson method.展开更多
文摘In this paper results on the estimates for solutions of certain higher order finite difference equations are established. The main tool employed in our analysis is based on the applications of the discrete inequality which provides an explicit bound on the unknown function.
基金supported by the grant NSC 98-2115-M-194-010-MY2
文摘We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金The project supported by the National Natural Science Foundation of China(60073044)the State Key Development Programme for Basic Research of China(G1990022207).
文摘In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.
文摘The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools.in the theory of certain fourth order partial finite difference equations. The analysis used in the proof is elementary and the results established provide new estimates for these types of inequalities.AMS (MOS) Subject Classification (1991 ): Primary 26D15.
基金The work presented in this paper was supported by the National Science Foundation of China
文摘The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have the advantages of parallel computing, stability and good accuracy. Tn this paper for the two-dimensional diffusion equation, the net region is divided into bands, a special kind of block. This method is called the alternating Band Crank-Nicolson method.