Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the...The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.展开更多
A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for ...A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for the wave surface, and the other type is for highly variable gradients. The method has high-order accuracy because of the use of the Chebyshev polynomial as the basis function. The polynomial is used to interpolate the values between the two non-uniform meshes from a previous time step to the current time step. To attain high accuracy in the time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme is used. To avoid numerical oscillations caused by the dispersion term in the Korteweg-de Vries (KdV) equation, a numerical technique on non-uniform meshes is introduced. The proposed numerical scheme is validated by the applications to the Burgers equation (nonlinear convectiondiffusion problems) and the KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparisons. Numerical results agree very well with the corresponding analytical solutions in all cases.展开更多
We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The meth...We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented,thus arriving at a compact formulation.In general,a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case.The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations.The convergence of the scheme has been established using the matrix analysis,and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix.The difference scheme has been applied to test convection diffusion equation,steady state Burger’s equation,ocean model and a semi-linear elliptic equation.The computational results confirm the theoretical order and accuracy of the method.展开更多
A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is co...A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered.展开更多
A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guarante...A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guaranteed to converge. Examples are given to illustrate its efficiency.展开更多
提出了一种基于三角面元数据生成涂层目标时域有限差分(finite-difference time domain,FDTD)共形网格的方法。通过将原目标中各三角面元的顶点沿曲面在该点处的法线方向内移(内涂层)或外移(外涂层)所需的厚度,得到一组关于涂层的三角...提出了一种基于三角面元数据生成涂层目标时域有限差分(finite-difference time domain,FDTD)共形网格的方法。通过将原目标中各三角面元的顶点沿曲面在该点处的法线方向内移(内涂层)或外移(外涂层)所需的厚度,得到一组关于涂层的三角面元数据。其中曲面上各顶点处的法线方向近似等于包围该顶点的各三角面元的单位法向的矢量和。对于局部涂敷的情况,可根据需要只将涂敷部分所包含的三角面元顶点进行相应的移动,而其余顶点的位置保持不变。利用投影求交法,由原目标的三角面元数据和新生成的涂层三角面元数据即可得到共形FDTD计算所需要的共形网格参数。数值结果验证了方法的正确性和有效性。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.
文摘The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
基金supported by the Research Grants Council of Hong Kong (No. 522007)the National Marine Public Welfare Research Projects of China (No. 201005002)
文摘A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for the wave surface, and the other type is for highly variable gradients. The method has high-order accuracy because of the use of the Chebyshev polynomial as the basis function. The polynomial is used to interpolate the values between the two non-uniform meshes from a previous time step to the current time step. To attain high accuracy in the time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme is used. To avoid numerical oscillations caused by the dispersion term in the Korteweg-de Vries (KdV) equation, a numerical technique on non-uniform meshes is introduced. The proposed numerical scheme is validated by the applications to the Burgers equation (nonlinear convectiondiffusion problems) and the KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparisons. Numerical results agree very well with the corresponding analytical solutions in all cases.
文摘We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented,thus arriving at a compact formulation.In general,a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case.The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations.The convergence of the scheme has been established using the matrix analysis,and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix.The difference scheme has been applied to test convection diffusion equation,steady state Burger’s equation,ocean model and a semi-linear elliptic equation.The computational results confirm the theoretical order and accuracy of the method.
文摘A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered.
基金Supported by the Science Technology Development Program of Beijing Municipal Education Commission (KM200510011004)
文摘A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guaranteed to converge. Examples are given to illustrate its efficiency.
文摘提出了一种基于三角面元数据生成涂层目标时域有限差分(finite-difference time domain,FDTD)共形网格的方法。通过将原目标中各三角面元的顶点沿曲面在该点处的法线方向内移(内涂层)或外移(外涂层)所需的厚度,得到一组关于涂层的三角面元数据。其中曲面上各顶点处的法线方向近似等于包围该顶点的各三角面元的单位法向的矢量和。对于局部涂敷的情况,可根据需要只将涂敷部分所包含的三角面元顶点进行相应的移动,而其余顶点的位置保持不变。利用投影求交法,由原目标的三角面元数据和新生成的涂层三角面元数据即可得到共形FDTD计算所需要的共形网格参数。数值结果验证了方法的正确性和有效性。