The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite n...The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.展开更多
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It lead...Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i...The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.展开更多
Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational ...Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the ...The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.展开更多
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha...The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.展开更多
A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two metho...A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method.展开更多
Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations...Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.展开更多
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element met...The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.展开更多
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation in...A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.展开更多
The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculation...The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculations and numerical analysis for the microstrip patch antennas. In this paper, two different designs have been modelled and analyzed and both designs are based on the rectangular patches. The feeding point of one design is inside the patch while the other design contains feeding point outside the patch is T shaped. The computational analysis showed some interesting results for radiation pattern and far field domain. For these designs, the characteristic impedance taken is 50 Ω and the operating frequency domain is 1.4 to 1.7 GHz. The microstrip patch antennas are encapsulated in the inert spherical atmosphere of 20 mm thickness containing air inside it.展开更多
A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative met...A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem.However,it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem.Therefore,authors propose a method to introduce double-double precision into the interface problem and the subdomain problem.This proposed method improves the convergence of the interface problem.In this paper,first,we describe proposed method.Second,we confirm validity of the method by using Team Workshop Problem 7,standard model for eddy current analysis.Finally,we show effectiveness of the method from two numerical results.展开更多
The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulat...The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,展开更多
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金This work was supported by the China State Major Key Project for Basic Researches Science Fund of the Ministry of Education
文摘The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
基金Project supported by China Postdoctoral Science Foundation (20100481488), Key Fund Project of Advanced Research of the Weapon Equipment (9140A33040512JB3401).
基金Project supported by the National Natural Science Foundation of China (No. 10876100)
文摘Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
文摘The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.
文摘Designing airfoils according to given pressure (or velocity) distribution is one kind of free boundary problems. Free boundary condition can be coupled with the flow governing equations by variable-domain variational calculus, which makes it possible to calculate simultaneously the flow field and the free boundary. An accurate deduction of the variable-domain variational principles is taken herein to design airfoils in compressible and incompressible flows. Furthermore, two grid types (H and O) are used in the calculation with better results for the O-type grid. It is shown that convergence is accelerated and good results can be obtained even if the initial guessed airfoil shape is a triangle, demonstrating the strong adaptability of this method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
基金Project supported partly by the Open Research Program in State Key Laboratory of Millimeter Waves of China(Grant No.K200802)partly by the National Natural Science Foundation of China(Grant No.60971122)
文摘The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.
基金financial support by Severo Ochoa Centre of Excellence (2019-2023) Grant No. CEX2018-000797-Sfunded by MCIN/AEI/10.13039/501100011033+1 种基金research projects BIA2017-84752-RPID2020-119598RB-I00
文摘The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.
基金Project supported by China Postdoctoral Science Foundation (No.2004036145)
文摘A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method.
基金Project supported by the National Natural Science Foundation of China(No.11001061)the Science and Technology Foundation of Guizhou Province of China(No.[2008]2123)
文摘Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.
文摘The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.
基金The project supported by the National Natural Science Foundation of China(10025209,10132010 90208002)the Research Grants of the Council of the Hong Kong Special Administrative Region,China(HKU7086/02E)the Key Grant Project of the Chinese Ministr
文摘A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.
文摘The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculations and numerical analysis for the microstrip patch antennas. In this paper, two different designs have been modelled and analyzed and both designs are based on the rectangular patches. The feeding point of one design is inside the patch while the other design contains feeding point outside the patch is T shaped. The computational analysis showed some interesting results for radiation pattern and far field domain. For these designs, the characteristic impedance taken is 50 Ω and the operating frequency domain is 1.4 to 1.7 GHz. The microstrip patch antennas are encapsulated in the inert spherical atmosphere of 20 mm thickness containing air inside it.
文摘A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem.However,it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem.Therefore,authors propose a method to introduce double-double precision into the interface problem and the subdomain problem.This proposed method improves the convergence of the interface problem.In this paper,first,we describe proposed method.Second,we confirm validity of the method by using Team Workshop Problem 7,standard model for eddy current analysis.Finally,we show effectiveness of the method from two numerical results.
文摘The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,