Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/t...Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.展开更多
The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-...The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.展开更多
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its l...The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.展开更多
AbstractFinite element analysis and optimization subject to stress, displacement and side con-straints for composite sandwich structures are mainly treated. The square isoparametricsandwich plate / shell elements are ...AbstractFinite element analysis and optimization subject to stress, displacement and side con-straints for composite sandwich structures are mainly treated. The square isoparametricsandwich plate / shell elements are used to perform structural analysis. The thickness ofthe faceplates and the depth of the core are taken as design variables in optimization pro-cess. The number of layers for each laminate is also taken as design variables if the compo-site faceplates are used. A few widely applied approximation concepts, such as design vari-able linking, regionalization method and temporary deletion technique of passive con-straints are employed to reduce the number of both design variables and constraints. Theadvanced hybrid approximation techniques combining with dual solutions are cmployed inoptimization. The corresponding software is applied to the analysis of experimental modeland to the optimum design for the composite sandwich front-fuselage, and satisfactory re-sults are obtained.展开更多
This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class ...This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class hierarchy structure of object-oriented finite element structural analysis, and gives a part C+ + code description.展开更多
Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses...Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses, it is also subjected to vibrations, due to out of balance tire or wheel and an out of round tire or wheel, or a bent rim. The main objective of this work is to reduce the stiffness of the damper, so that the damper can withstand within the required constraints [i.e. the forced frequency range of 80 Hz to 150 Hz]. The free vibrational and forced vibrational effects are investigated to predict the resonance phenomenon of the damper. Finite Element Analysis in ANSYS-11 software was performed to predict the dynamic behavior of the system under the required vibrational frequencies ranging from 80 Hz to 150 Hz at given loading conditions.展开更多
In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from...In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.展开更多
The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treat...The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treated by conventional discectomy (CONDIS) compared to minimally-invasive discectomy (MIVDIS). A validated three-dimensional model of an intact, healthy, adult full cervical spine (C1-C7) (INT) was constructed. This model was then modified to create two models, one simulating each of the above-men-tioned two techniques for discectomy of the severely degenerated C5-C6 disc. For each of these three models, we used the finite element analysis method to obtain three biomechanical parameters at various tissues in the model, under seven different physio-logically relevant loadings. For each of the biome-chanical parameters, the results were expressed as relative change in its value when a specified combi-nation of simulated discectomy model and applied loading was used, with respect to the corresponding value in the intact model. We then computed the value of a composite biomechanical performance in-dex (CBPI) for CONDIS and MIVDIS models, with this value incorporating all of the aforementioned relative changes. We found that CBPI was marginally lower for MIVDIS model. This trend is the same as that reported for the relative complications rate and outcome measures following conventional and mini-mally-invasive discectomies in the lumbar spine. From a healthcare perspective, one implication of our finding is that minimally-invasive cervical discectomy should be considered an attractive option provided that detailed patient selection criteria are clearly de-fined and strictly followed.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art desig...The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.展开更多
The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the...The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.展开更多
This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) cur...This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.展开更多
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1764251,51775160)Fundamental Research Funds for the Central Universities of China(Grant No.DUT19LAB24)
文摘Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.
基金The project supported by the National Meg-Science Enineering Project of Chinese Government
文摘The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.
文摘AbstractFinite element analysis and optimization subject to stress, displacement and side con-straints for composite sandwich structures are mainly treated. The square isoparametricsandwich plate / shell elements are used to perform structural analysis. The thickness ofthe faceplates and the depth of the core are taken as design variables in optimization pro-cess. The number of layers for each laminate is also taken as design variables if the compo-site faceplates are used. A few widely applied approximation concepts, such as design vari-able linking, regionalization method and temporary deletion technique of passive con-straints are employed to reduce the number of both design variables and constraints. Theadvanced hybrid approximation techniques combining with dual solutions are cmployed inoptimization. The corresponding software is applied to the analysis of experimental modeland to the optimum design for the composite sandwich front-fuselage, and satisfactory re-sults are obtained.
文摘This paper describes the object-oriented implementational method of finite element structural analysis, gives the basic concepts of the object-oriented method and objectoriented programming, develops a complete class hierarchy structure of object-oriented finite element structural analysis, and gives a part C+ + code description.
文摘Constant Velocity [CV] Joints are one of the most important components of front wheel drive axles. It is subjected to various stresses such as bending stress, shear stress and bearing stress. Apart from these stresses, it is also subjected to vibrations, due to out of balance tire or wheel and an out of round tire or wheel, or a bent rim. The main objective of this work is to reduce the stiffness of the damper, so that the damper can withstand within the required constraints [i.e. the forced frequency range of 80 Hz to 150 Hz]. The free vibrational and forced vibrational effects are investigated to predict the resonance phenomenon of the damper. Finite Element Analysis in ANSYS-11 software was performed to predict the dynamic behavior of the system under the required vibrational frequencies ranging from 80 Hz to 150 Hz at given loading conditions.
文摘In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.
文摘The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treated by conventional discectomy (CONDIS) compared to minimally-invasive discectomy (MIVDIS). A validated three-dimensional model of an intact, healthy, adult full cervical spine (C1-C7) (INT) was constructed. This model was then modified to create two models, one simulating each of the above-men-tioned two techniques for discectomy of the severely degenerated C5-C6 disc. For each of these three models, we used the finite element analysis method to obtain three biomechanical parameters at various tissues in the model, under seven different physio-logically relevant loadings. For each of the biome-chanical parameters, the results were expressed as relative change in its value when a specified combi-nation of simulated discectomy model and applied loading was used, with respect to the corresponding value in the intact model. We then computed the value of a composite biomechanical performance in-dex (CBPI) for CONDIS and MIVDIS models, with this value incorporating all of the aforementioned relative changes. We found that CBPI was marginally lower for MIVDIS model. This trend is the same as that reported for the relative complications rate and outcome measures following conventional and mini-mally-invasive discectomies in the lumbar spine. From a healthcare perspective, one implication of our finding is that minimally-invasive cervical discectomy should be considered an attractive option provided that detailed patient selection criteria are clearly de-fined and strictly followed.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
文摘The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.
基金This project was financially supported by the National Natural Science Foundation of China(No.50275054)the Provincial Natural Science Foundation of Guangdong(No.020923)the Industrial Science and Technology Development Program Foundation of Guangdong(No.2003C102013).
文摘The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.
基金supported by Teledyne Scientific&Imaging(TS&I),Internal Research and Development(IR&D)and approved for public release under TSI-PP-17-08
文摘This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.