In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from...In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.展开更多
Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the...Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.展开更多
In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cycl...In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.展开更多
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) anal...In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.展开更多
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ...This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.展开更多
Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight an...Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.展开更多
With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software p...With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software packages treat it using the net-radiation method or absorbed radiation method based on the assumption of isothermal surface with uniform radiation heat flux, which brings the conflict between the precision and the quantity of grids. Using integral method to compute the variable radiation heat flux in higher-order finite element, the precision can be improved greatly while using the same quantity of grids, because it is more consistent with the distribution of real temperature. In this paper, the integral is only processed on the same integral points as those used for solving the finite element equations, so it may be of high efficiency. In an academic testing model, the result is contrast to which get in ANSYS, proving the high precision of the method. Then an actual sandwich panel used in the thermal protection system is analyzed with the method, and the error is comparatively low to the analytical answer while the computation being of high efficiency.展开更多
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul...A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.展开更多
In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the test...In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the tests of random vibrations of the cabinet system and obtain the isopleths graph of deformation and stress of the cabinet.It can confirm maximum of deformation and stress of the cabinet and position happened.Through more analysis of the frequency response curve,which can confirm harm- ful consequences random vibrations caused and weak link of the cabinet structure.The numerical simulation results are in good a- greement with the experimental results.It shows that this research provides an efficient method for the anti-seismic design and the dynamic optimization design.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without consi...A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.展开更多
To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between ...To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.展开更多
Rotary tool of garbage crusher is the key component of the whole mechanism, which is of vital importance to tool design and analysis. Based on ANSYS Workbench 3D modeling, we carried on finite element analysis to tool...Rotary tool of garbage crusher is the key component of the whole mechanism, which is of vital importance to tool design and analysis. Based on ANSYS Workbench 3D modeling, we carried on finite element analysis to tool, and used the method of goal driven optimization to optimize the rotary tool. The optimization proves that the optimized maximum equivalent stress is 544.14 MPa, the quality is less, and the optimized rotary tool size is more reasonable. So it provided reasonable and scientific reference frame to the structural design of rotary tool.展开更多
In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite el...In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite element analysis for 81 cases is carried out using ANSYS Workbench 15.0 software. Using these data of FEM analysis an Artificial Neural Network has been trained. The successfully trained network is further used for analysis of four new cases which are also validated by using ANSYS Workbench 15.0 software.展开更多
文摘In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.
文摘Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.
文摘In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.
基金Supported by:National Natural Science Foundation of China Under Grant No.50878033 and National Special Foundation of Earthquake Science of China Under Grant No.200808021
文摘In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.
文摘This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.
文摘Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.
文摘With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software packages treat it using the net-radiation method or absorbed radiation method based on the assumption of isothermal surface with uniform radiation heat flux, which brings the conflict between the precision and the quantity of grids. Using integral method to compute the variable radiation heat flux in higher-order finite element, the precision can be improved greatly while using the same quantity of grids, because it is more consistent with the distribution of real temperature. In this paper, the integral is only processed on the same integral points as those used for solving the finite element equations, so it may be of high efficiency. In an academic testing model, the result is contrast to which get in ANSYS, proving the high precision of the method. Then an actual sandwich panel used in the thermal protection system is analyzed with the method, and the error is comparatively low to the analytical answer while the computation being of high efficiency.
文摘A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.
文摘In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the tests of random vibrations of the cabinet system and obtain the isopleths graph of deformation and stress of the cabinet.It can confirm maximum of deformation and stress of the cabinet and position happened.Through more analysis of the frequency response curve,which can confirm harm- ful consequences random vibrations caused and weak link of the cabinet structure.The numerical simulation results are in good a- greement with the experimental results.It shows that this research provides an efficient method for the anti-seismic design and the dynamic optimization design.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
基金National Natural Science Foundation of China(No.51175475)Natural Science Foundation of Zhejiang Province,China(No.LY14E050027)
文摘A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.
文摘To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.
文摘Rotary tool of garbage crusher is the key component of the whole mechanism, which is of vital importance to tool design and analysis. Based on ANSYS Workbench 3D modeling, we carried on finite element analysis to tool, and used the method of goal driven optimization to optimize the rotary tool. The optimization proves that the optimized maximum equivalent stress is 544.14 MPa, the quality is less, and the optimized rotary tool size is more reasonable. So it provided reasonable and scientific reference frame to the structural design of rotary tool.
文摘In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite element analysis for 81 cases is carried out using ANSYS Workbench 15.0 software. Using these data of FEM analysis an Artificial Neural Network has been trained. The successfully trained network is further used for analysis of four new cases which are also validated by using ANSYS Workbench 15.0 software.