期刊文献+
共找到1,399篇文章
< 1 2 70 >
每页显示 20 50 100
Nodeless variable finite element method for heat transfer analysis by means of flux-based formulation and mesh adaptation 被引量:1
1
作者 Sutthisak Phongthanapanich Suthee Traivivatana Parinya Boonmaruth Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第2期138-147,共10页
Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolat... Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method, The solution accuracy is further improved by implementing an adaptive meshing technique to generaie finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems tire: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to moving heat source. 展开更多
关键词 Flux-based formulation Adaptive mesh movement finite element method heat transfer
下载PDF
Comprehensive Molten Salt Storage Shell and Supporting Structure Design and Analysis-Part II:A Conductive and Convective Numerical Finite Element Heat Transfer Analysis for Molten Salt Cylindrical Shells at 700℃,and Comparison with Theoretical Analysis
2
作者 Nathan Loyd Samaan Ladkany William Culbreth 《Journal of Energy and Power Engineering》 2022年第2期52-70,共19页
In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700... In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results. 展开更多
关键词 Molten salts storage tank design solar energy CONDUCTIVE CONVECTIVE heat transfer insulation finite element
下载PDF
Analysis Process of Finite Element Method in Heat Transfer through Fabrics
3
作者 程中浩 孙玉钗 冯勋伟 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期140-143,共4页
According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat tran... According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat transfer through fabrics. Details were given to describe how conduction and convection affect temperature distribution and heat loss during heat transfer processes by taking advantage of the quick calculation of FEA software MSC.Marc. Experimental results show good agreement with the theoretical results. 展开更多
关键词 织物 热处理 有限元 瞬时热转变 分析过程
下载PDF
Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode 被引量:5
4
作者 胡庆贤 武传松 张裕明 《China Welding》 EI CAS 2007年第2期55-58,共4页
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature ... An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones. 展开更多
关键词 keyhole plasma arc welding adaptive heat source mode finite element analysis
下载PDF
Streamline upwind finite element method for conjugate heat transfer problems 被引量:3
5
作者 Niphon Wansophark Atipong Malatip Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期436-443,共8页
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el... This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method. 展开更多
关键词 Streamline upwind.Conjugate heat transfer.finite element method
下载PDF
Impact of a Magnetic Dipole on Heat Transfer in Non-Conducting Magnetic Fluid Flow over a Stretching Cylinder
6
作者 Anupam Bhandari 《Fluid Dynamics & Materials Processing》 EI 2024年第3期475-486,共12页
The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered.The governing nonlinear differential equations are solve... The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered.The governing nonlinear differential equations are solved numerically using a finite element approach,which is properly validated through comparison with earlier results available in the literature.The results for the velocity and temperature fields are provided for different values of the Reynolds number,ferromagnetic response number,Prandtl number,and viscous dissipation parameter.The influence of some physical parameters on skin friction and heat transfer on the walls of the cylinder is also investigated.The applicability of this research to heat control in electronic devices is discussed to a certain extent. 展开更多
关键词 FERROFLUID stretching cylinder finite element method heat transfer magnetic dipole
下载PDF
Conjugate Heat Transfer Analysis of an Ultrasonic Molten Metal Treatment System 被引量:1
7
作者 ZHU Youli BIAN Feilong +1 位作者 WANG Yanli ZHAO Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期986-991,共6页
In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the hor... In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system. 展开更多
关键词 conjugate heat transfer finite element analysis ultrasonic molten metal treatment computational fluid dynamics
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:1
8
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 辐射传热模型 凝固过程 有限元法 涡轮叶片 高温合金 换热模型 仿真结果 矩阵和
下载PDF
Finite element formulation of axisymmetric heat transfer problem for orthotropic materials
9
作者 闫相桥 童剑 武海鹏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期39-42,共4页
By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid densi... By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field. 展开更多
关键词 复合材料 有限元公式表示法 轴对称 热传递 正交各向异性材料
下载PDF
Modelling of Transduction Heaters Using Transformer Equivalent Circuit and Finite Element Analysis
10
作者 Lisiate Takau Pat Bodger 《Journal of Energy and Power Engineering》 2014年第6期1085-1092,共8页
关键词 有限元分析模型 等效电路 加热器 变压器 计算结果 TEC 加热实验 FEA
下载PDF
FINITE ELEMENT ANALYSIS OF LAMINAR FLOW AND HEAT TRANSFER IN A BUNDLE OF CYLINDERS 被引量:2
11
作者 Wang Yan-xing Zhao Hong +1 位作者 Lu Xi-yun Zhuang Li-xian 《Journal of Hydrodynamics》 SCIE EI CSCD 2000年第4期99-108,共10页
Two-dimensional Navier-Stokes equations and energy equation governing incompressible laminar flow past a bundle of cylinders were numerically solved by using the finite element method. The velocity correction method w... Two-dimensional Navier-Stokes equations and energy equation governing incompressible laminar flow past a bundle of cylinders were numerically solved by using the finite element method. The velocity correction method was used for time advancement, and spatial discretization was carried out with the Galerkin weighted residual method. Viscous flows past the cylinder banks arranged in in-line cylinder bundles and staggered cylinder bundles, coupled with heat transfer, were investigated for pitch-diameter ratios of 1.5 and 2.0 and the Reynolds numbers from 50 to 500. Flow structures and heat transfer behavior were discussed. The results obtained agree well with available numerical data. 展开更多
关键词 finite element method velocity correction method heat transfer bundle of cylinders
原文传递
A New Formulation of the Scaled Boundary Finite Element Method for Heterogeneous Media:Application to Heat Transfer Problems
12
作者 Nima Noormohammadi Nazanin Pirhaji Khouzani 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期285-296,共12页
The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the... The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the model order by scaling the boundary solution onto the inner element.To this end,tri-lateral elements are emanated from a scaling center,followed by the development of a semi-analytical solution along the radial direction and a finite element solution along the circumferential/boundary direction.The discretization is thus limited to the boundaries of the model,and the semi-analytical radial solution is found through the solution of an eigenvalue problem,which restricts the methods’applicability to heterogeneous media.In this research,we first extracted the SBFEM formulation considering the heterogeneity of the media.Then,we replaced the semi-analytical radial solution with the EqBFs and removed the eigenvalue solution step from the SBFEM.The varying coefficients of the partial differential equation(PDE)resulting from the heterogeneity of the media are replaced by a finite series in the radial and circumferential directions of the element.A weighted residual approach is applied to the radial equation.The equilibrated radial solution series is used in the new formulation of the SBFEM. 展开更多
关键词 Scaled boundary finite element method Equilibrated basis functions heat transfer
原文传递
Finite Element Analysis of the Material’s Area Affected during a Micro Thermal Analysis Applied to Homogeneous Materials
13
作者 Yoann Joliff Lenaik Belec Jean-Francois Chailan 《Journal of Surface Engineered Materials and Advanced Technology》 2011年第1期1-8,共8页
Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimat... Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials. 展开更多
关键词 Micro-Thermal analysis Localized Thermal analysis heat Affected Zone Thermal Conductivity finite element Method
下载PDF
Numerical Simulation of Heat Transfer and Deformation of Initial Shell in Soft Contact Continuous Casting Mold Under High Frequency Electromagnetic Field 被引量:8
14
作者 NA Xian-zhao XUE Min +1 位作者 ZHANG Xing-zhong GAN Yong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第6期14-21,共8页
Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromag... Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained. 展开更多
关键词 soft contact electromagnetic continuous casting MOLD heat transfer ~ initial solidification~ elastic-plasticdeformation finite element method numerical simulation
下载PDF
Non-uniform heat transfer behavior during shell solidification in a wide and thick slab continuous casting mold 被引量:4
15
作者 Zhao-zhen Cai Miao-yong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第3期240-250,共11页
By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformati... By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward. 展开更多
关键词 continuous casting MOLDS heat transfer SOLIDIFICATION finite element method
下载PDF
Enhancement of natural convection heat transfer from a fin by triangular perforation of bases parallel and toward its tip 被引量:3
16
作者 Abdullah H.AlEssa Mohamad I.Al-Widyan 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1033-1044,共12页
This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissi... This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered are geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation dimensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased. 展开更多
关键词 finned surfaces heat transfer enhancement triangular perforations natural convection finite element perforated fin heat dissipation
下载PDF
Numerical calculation of thermal field and heat transfer coefficient for 160 kA aluminum reduction cell 被引量:2
17
作者 冯乃祥 梁芳惠 +3 位作者 孙阳 彭建平 冷正旭 谢青松 《中国有色金属学会会刊:英文版》 CSCD 2003年第4期953-957,共5页
The principle of thermal flux being constant in heat flow tube and the principle of heat balance were applied to analyze and calculate the steady state thermal field and the electrolyte ledge heat transfer coefficient... The principle of thermal flux being constant in heat flow tube and the principle of heat balance were applied to analyze and calculate the steady state thermal field and the electrolyte ledge heat transfer coefficient of aluminum reduction cell by finite element method. The calculated results show that the melt ledge heat transfer coefficient in the 160kA prebaked anode aluminum reduction cell of Guizhou Aluminum Smelter is higher than that of other cells of the same current. It is also found that the electrolyte and metal flow much faster, which may be the results of poor bus bar arrangements. Meanwhile, the calculated results of melt ledge heat transfer coefficient by heat flow tube method are almost in full agreement with the former works. This verifies the applicability of this method. 展开更多
关键词 铝电解槽 温度场 传热系数 数值计算 有限元
下载PDF
A Numerical study of the flow with heat Transfer of a Pseudoplastic fluid Between Parallel Plates
18
作者 S. Iqbal A Zeb +1 位作者 A. M Siddiqui T Haroon 《Journal of Quantum Information Science》 2011年第1期18-25,共8页
One dimensional flow with heat transfer of a pseudoplastic fluid between two infinite horizontal parallel plates is investigated. The thermophysical properties of the fluid are assumed to be constant and numerical sol... One dimensional flow with heat transfer of a pseudoplastic fluid between two infinite horizontal parallel plates is investigated. The thermophysical properties of the fluid are assumed to be constant and numerical solution using the finite element method, along with the corresponding exact solution for the fluid velocity and the fluid temperature is obtained. The effect of variation of the governing parameters is studied using figures and tables. It is found that the numerical solution agrees well with the corresponding exact solution and that the fluid velocity, together with the fluid temperature, increases with increasing values of the governing parameters. 展开更多
关键词 PSEUDOPLASTIC FLUIDS heat transfer finite element Method EXACT Solution
下载PDF
Modeling and Simulation of Heat Transfer through an Electric Wire
19
作者 Ahmed Mohamed Krima Hesham Gehad Ibrahim 《Computer Technology and Application》 2011年第1期1-8,共8页
关键词 电线 仿真 建模 传热 温度分布模型 数值计算方法 行为模拟 热传导问题
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
20
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 finite element method Freezing process Coupled heat and mass transfer Variable thermophysical parameters
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部